metadata
language: ko
tags:
- bart
datasets:
- korquad
license: mit
Korean Question Generation Model
Github
https://github.com/Seoneun/KoBART-Question-Generation
Fine-tuning Dataset
KorQuAD 1.0
Demo
https://huggingface.co/Sehong/kobart-QuestionGeneration
How to use
import torch
from transformers import PreTrainedTokenizerFast
from transformers import BartForConditionalGeneration
tokenizer = PreTrainedTokenizerFast.from_pretrained('Sehong/kobart-QuestionGeneration')
model = BartForConditionalGeneration.from_pretrained('Sehong/kobart-QuestionGeneration')
text = "1989λ
2μ 15μΌ μ¬μλ λλ―Ό νλ ₯ μμλ₯Ό μ£Όλν νμ(νλ ₯νμλ±μ²λ²μκ΄νλ²λ₯ μλ°)μΌλ‘ μ§λͺ
μλ°°λμλ€. 1989λ
3μ 12μΌ μμΈμ§λ°©κ²μ°°μ² 곡μλΆλ μμ’
μμ μ¬μ ꡬμμμ₯μ λ°λΆλ°μλ€. κ°μ ν΄ 6μ 30μΌ νμμΆμ μ μμκ²½μ λνλ‘ ν견νμ¬ κ΅κ°λ³΄μλ²μλ° νμκ° μΆκ°λμλ€. κ²½μ°°μ 12μ 18μΌ~20μΌ μ¬μ΄ μμΈ κ²½ν¬λνκ΅μμ μμ’
μμ΄ μ±λͺ
λ°νλ₯Ό μΆμ§νκ³ μλ€λ 첩보λ₯Ό μ
μνκ³ , 12μ 18μΌ μ€μ 7μ 40λΆ κ²½ κ°μ€μ΄κ³Ό μ μλ΄μΌλ‘ 무μ₯ν νΉκ³΅μ‘° λ° λ곡과 μ§μ 12λͺ
λ± 22λͺ
μ μ¬λ³΅ κ²½μ°°μ μΉμ©μ°¨ 8λμ λλμ΄ κ²½ν¬λνκ΅μ ν¬μ
νλ€. 1989λ
12μ 18μΌ μ€μ 8μ 15λΆ κ²½ μμΈμ²λ리경찰μλ νΈμ νμ 5λͺ
κ³Ό ν¨κ» κ²½ν¬λνκ΅ νμνκ΄ κ±΄λ¬Ό κ³λ¨μ λ΄λ €μ€λ μμ’
μμ λ°κ²¬, κ²κ±°ν΄ ꡬμμ μ§ννλ€. μμ’
μμ μ²λ리경찰μμμ μ½ 1μκ° λμ μ‘°μ¬λ₯Ό λ°μ λ€ μ€μ 9μ 50λΆ κ²½ μμΈ μ₯μλμ μμΈμ§λ°©κ²½μ°°μ² 곡μλΆμ€λ‘ μΈκ³λμλ€. <unused0> 1989λ
2μ 15μΌ"
raw_input_ids = tokenizer.encode(text)
input_ids = [tokenizer.bos_token_id] + raw_input_ids + [tokenizer.eos_token_id]
summary_ids = model.generate(torch.tensor([input_ids]))
print(tokenizer.decode(summary_ids.squeeze().tolist(), skip_special_tokens=True))
# <unused0> is sep_token, sep_token seperate content and answer