whisper-finetuned-1 / README.md
SemihDurmaz's picture
End of training
29b6359 verified
metadata
language:
  - tr
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Medium Tr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: default
          split: None
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 57.77777777777777

Whisper Medium Tr

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1054
  • Wer: 57.7778

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • training_steps: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0001 33.3333 50 0.8730 30.0
0.0 66.6667 100 0.9210 44.4444
0.0 100.0 150 1.0448 51.1111
0.0 133.3333 200 1.1054 57.7778

Framework versions

  • Transformers 4.43.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1