tags: | |
- autotrain | |
- tabular | |
- regression | |
- tabular-regression | |
datasets: | |
- Ammok/laptop_price_prediction | |
# Model Trained Using AutoTrain | |
- Problem type: Tabular regression | |
## Validation Metrics | |
- r2: 0.7067895702353126 | |
- mse: 10324863219600.982 | |
- mae: 1934271.3093846152 | |
- rmse: 3213232.518757549 | |
- rmsle: 0.2620544321124841 | |
- loss: 3213232.518757549 | |
## Best Params | |
- learning_rate: 0.032035042723876625 | |
- reg_lambda: 2.018311481741709e-06 | |
- reg_alpha: 0.026605527978495237 | |
- subsample: 0.7597204784105835 | |
- colsample_bytree: 0.9197387798773331 | |
- max_depth: 9 | |
- early_stopping_rounds: 477 | |
- n_estimators: 20000 | |
- eval_metric: rmse | |
## Usage | |
```python | |
import json | |
import joblib | |
import pandas as pd | |
model = joblib.load('model.joblib') | |
config = json.load(open('config.json')) | |
features = config['features'] | |
# data = pd.read_csv("data.csv") | |
data = data[features] | |
predictions = model.predict(data) # or model.predict_proba(data) | |
# predictions can be converted to original labels using label_encoders.pkl | |
``` | |