Text Generation
Transformers
Safetensors
English
llama
conversational
text-generation-inference
Inference Endpoints
Houxing's picture
add chat template
e939100
metadata
license: apache-2.0
datasets:
  - SenseLLM/ReflectionSeq-GPT
  - SenseLLM/ReflectionSeq-DS
language:
  - en

ReflectionCoder: Learning from Reflection Sequence for Enhanced One-off Code Generation

πŸ“„ Paper β€’ 🏠 Repo β€’ πŸ€– Models β€’ πŸ“š Datasets

Introduction

ReflectionCoder is a novel approach that effectively leverages reflection sequences constructed by integrating compiler feedback to improve one-off code generation performance. Please refer to our paper and repo for more details!


Models

Model Checkpoint Size HumanEval (+) MBPP (+) License
ReflectionCoder-CL-7B πŸ€— HF Link 7B 75.0 (68.9) 72.2 (61.4) Llama2
ReflectionCoder-CL-34B πŸ€— HF Link 34B 70.7 (66.5) 68.4 (56.6) Llama2
ReflectionCoder-DS-6.7B πŸ€— HF Link 6.7B 80.5 (74.4) 81.5 (69.6) DeepSeek
ReflectionCoder-DS-33B πŸ€— HF Link 33B 82.9 (76.8) 84.1 (72.0) DeepSeek

Datasets

Dataset Link License
ReflectionSeq-GPT πŸ€— HF Link License
ReflectionSeq-DS πŸ€— HF Link License

How to Use

Chat Format

Following chat templates of most models, we use two special tokens to wrap the message of user and assistant, i.e., <|user|>, <|assistant|>, and <|endofmessage|>. Furthermore, we use two special tokens to wrap the content of different blocks, i.e., <|text|> and <|endofblock|>. You can use the following template to prompt our ReflectionCoder.

import torch
from transformers import pipeline

chat = [
    {"role": "user", "content": "<Your code instruction here>"}
]

generator = pipeline(
    model="SenseLLM/ReflectionCoder-CL-34B",
    task="text-generation",
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

result = generator(chat, max_length=128, num_return_sequences=1)

print(result)

Please refer to our GitHub Repo for more technical details.

Citation

If you find this repo useful for your research, please kindly cite our paper:

@misc{ren2024reflectioncoder,
    title={ReflectionCoder: Learning from Reflection Sequence for Enhanced One-off Code Generation}, 
    author={Houxing Ren and Mingjie Zhan and Zhongyuan Wu and Aojun Zhou and Junting Pan and Hongsheng Li},
    year={2024},
    eprint={2405.17057},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

Acknowledgments

We thank the following amazing projects that truly inspired us: