Senthil
End of training
97afb2e verified
|
raw
history blame
2.92 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distil_bert_own_txt_clf_model
    results: []

distil_bert_own_txt_clf_model

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2314
  • Accuracy: 0.8
  • F1: 0.7950
  • Precision: 0.8053
  • Recall: 0.8084

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.3619 3.33 50 1.1190 0.5083 0.3510 0.3025 0.4690
1.0373 6.67 100 0.6955 0.75 0.7245 0.7800 0.7244
0.4461 10.0 150 0.8629 0.6833 0.6799 0.7370 0.6928
0.0585 13.33 200 1.3333 0.7333 0.7132 0.7888 0.7391
0.002 16.67 250 1.2095 0.775 0.7688 0.8003 0.7797
0.0053 20.0 300 1.0637 0.7833 0.7728 0.7803 0.7773
0.0006 23.33 350 1.0393 0.7833 0.7731 0.7866 0.7804
0.0004 26.67 400 1.0850 0.7917 0.7825 0.8004 0.7913
0.0004 30.0 450 1.0655 0.7833 0.7731 0.7866 0.7804
0.0003 33.33 500 1.0775 0.7833 0.7731 0.7866 0.7804
0.0003 36.67 550 1.0626 0.7833 0.7731 0.7866 0.7804
0.0003 40.0 600 1.0474 0.775 0.7636 0.7736 0.7695
0.0003 43.33 650 1.0526 0.775 0.7636 0.7736 0.7695
0.0003 46.67 700 1.0609 0.775 0.7636 0.7736 0.7695
0.0003 50.0 750 1.0607 0.775 0.7636 0.7736 0.7695

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2