metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distil_bert_own_txt_clf_model
results: []
distil_bert_own_txt_clf_model
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2314
- Accuracy: 0.8
- F1: 0.7950
- Precision: 0.8053
- Recall: 0.8084
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
1.3619 | 3.33 | 50 | 1.1190 | 0.5083 | 0.3510 | 0.3025 | 0.4690 |
1.0373 | 6.67 | 100 | 0.6955 | 0.75 | 0.7245 | 0.7800 | 0.7244 |
0.4461 | 10.0 | 150 | 0.8629 | 0.6833 | 0.6799 | 0.7370 | 0.6928 |
0.0585 | 13.33 | 200 | 1.3333 | 0.7333 | 0.7132 | 0.7888 | 0.7391 |
0.002 | 16.67 | 250 | 1.2095 | 0.775 | 0.7688 | 0.8003 | 0.7797 |
0.0053 | 20.0 | 300 | 1.0637 | 0.7833 | 0.7728 | 0.7803 | 0.7773 |
0.0006 | 23.33 | 350 | 1.0393 | 0.7833 | 0.7731 | 0.7866 | 0.7804 |
0.0004 | 26.67 | 400 | 1.0850 | 0.7917 | 0.7825 | 0.8004 | 0.7913 |
0.0004 | 30.0 | 450 | 1.0655 | 0.7833 | 0.7731 | 0.7866 | 0.7804 |
0.0003 | 33.33 | 500 | 1.0775 | 0.7833 | 0.7731 | 0.7866 | 0.7804 |
0.0003 | 36.67 | 550 | 1.0626 | 0.7833 | 0.7731 | 0.7866 | 0.7804 |
0.0003 | 40.0 | 600 | 1.0474 | 0.775 | 0.7636 | 0.7736 | 0.7695 |
0.0003 | 43.33 | 650 | 1.0526 | 0.775 | 0.7636 | 0.7736 | 0.7695 |
0.0003 | 46.67 | 700 | 1.0609 | 0.775 | 0.7636 | 0.7736 | 0.7695 |
0.0003 | 50.0 | 750 | 1.0607 | 0.775 | 0.7636 | 0.7736 | 0.7695 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2