Edit model card

Remote-Sensing-UAV-image-classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an jonathan-roberts1/RSSCN7 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0593
  • Accuracy: 0.9907

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3922 0.71 100 0.4227 0.8821
0.2986 1.43 200 0.3142 0.9089
0.1109 2.14 300 0.2056 0.9518
0.0864 2.86 400 0.2472 0.9375
0.0193 3.57 500 0.0593 0.9907

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
25
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SeyedAli/Remote-Sensing-UAV-image-classification

Finetuned
(1717)
this model

Dataset used to train SeyedAli/Remote-Sensing-UAV-image-classification

Space using SeyedAli/Remote-Sensing-UAV-image-classification 1

Collection including SeyedAli/Remote-Sensing-UAV-image-classification