File size: 2,900 Bytes
ef8b319 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: NLLB-600m-nlg_Latn-to-eng_Latn
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# NLLB-600m-nlg_Latn-to-eng_Latn
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9402
- Bleu: 45.9717
- Gen Len: 42.476
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 2.5032 | 0.49 | 500 | 1.7451 | 24.369 | 42.66 |
| 1.732 | 0.98 | 1000 | 1.3896 | 31.9939 | 42.304 |
| 1.4344 | 1.47 | 1500 | 1.2333 | 36.4344 | 42.384 |
| 1.3141 | 1.96 | 2000 | 1.1442 | 38.5023 | 41.96 |
| 1.1877 | 2.45 | 2500 | 1.0936 | 41.3292 | 42.668 |
| 1.1355 | 2.94 | 3000 | 1.0460 | 43.1357 | 43.22 |
| 1.0623 | 3.43 | 3500 | 1.0197 | 43.2339 | 42.692 |
| 1.0353 | 3.93 | 4000 | 1.0010 | 43.8863 | 43.012 |
| 0.9786 | 4.42 | 4500 | 0.9899 | 44.2478 | 43.012 |
| 0.9682 | 4.91 | 5000 | 0.9731 | 44.9191 | 42.816 |
| 0.9184 | 5.4 | 5500 | 0.9690 | 44.908 | 42.496 |
| 0.9208 | 5.89 | 6000 | 0.9558 | 45.5488 | 42.772 |
| 0.8854 | 6.38 | 6500 | 0.9561 | 45.7261 | 42.844 |
| 0.8815 | 6.87 | 7000 | 0.9495 | 45.1231 | 42.38 |
| 0.8543 | 7.36 | 7500 | 0.9475 | 45.6717 | 42.56 |
| 0.8462 | 7.85 | 8000 | 0.9442 | 45.9782 | 42.652 |
| 0.8422 | 8.34 | 8500 | 0.9436 | 45.9353 | 42.628 |
| 0.8323 | 8.83 | 9000 | 0.9407 | 45.7945 | 42.492 |
| 0.8218 | 9.32 | 9500 | 0.9405 | 46.0215 | 42.472 |
| 0.8226 | 9.81 | 10000 | 0.9402 | 45.9717 | 42.476 |
### Framework versions
- Transformers 4.21.3
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|