Edit model card

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
product faq
  • 'Does the Meenakari jal jangla -Rani saree have meenakari?'
  • 'Is the Nike Dunk Low Premium Bacon available in size 7?'
  • 'What is the best way to recycle the packaging boxes for wholesale orders for wholesale orders?'
order tracking
  • 'I ordered the Cake Boards 7 days ago with order no 43210 how long will it take to deliver?'
  • 'I want to deliver bags to Pune, how many days will it take to deliver?'
  • 'I want to deliver packaging to Surat, how many days will it take to deliver?'
product policy
  • 'What is the procedure for returning a product that was part of a special promotion occasion?'
  • 'Can I return an item if it was damaged during delivery preparation?'
  • 'What is the procedure for returning a product that was part of a special occasion promotion?'
general faq
  • 'What are the key factors to consider when developing a personalized diet plan for weight loss?'
  • 'What are some tips for maximizing the antioxidant content when brewing green tea?'
  • 'Can you explain why Mashru silk is considered more comfortable to wear compared to pure silk sarees?'
product discoverability
  • 'Can you show me sarees in bright colors suitable for weddings?'
  • 'Do you have adidas Superstar shoes?'
  • 'Do you have any bestseller teas available?'

Evaluation

Metrics

Label Accuracy
all 0.8533

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Shankhdhar/classifier_woog_firstbud")
# Run inference
preds = model("Variety of cookie boxes")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 12.1961 28
Label Training Sample Count
general faq 24
order tracking 32
product discoverability 50
product faq 50
product policy 48

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0005 1 0.2265 -
0.0244 50 0.1831 -
0.0489 100 0.1876 -
0.0733 150 0.1221 -
0.0978 200 0.0228 -
0.1222 250 0.0072 -
0.1467 300 0.0282 -
0.1711 350 0.0015 -
0.1956 400 0.0005 -
0.2200 450 0.0008 -
0.2445 500 0.0004 -
0.2689 550 0.0003 -
0.2934 600 0.0003 -
0.3178 650 0.0002 -
0.3423 700 0.0002 -
0.3667 750 0.0002 -
0.3912 800 0.0003 -
0.4156 850 0.0002 -
0.4401 900 0.0002 -
0.4645 950 0.0001 -
0.4890 1000 0.0001 -
0.5134 1050 0.0001 -
0.5379 1100 0.0001 -
0.5623 1150 0.0002 -
0.5868 1200 0.0002 -
0.6112 1250 0.0001 -
0.6357 1300 0.0001 -
0.6601 1350 0.0001 -
0.6846 1400 0.0001 -
0.7090 1450 0.0001 -
0.7335 1500 0.0001 -
0.7579 1550 0.0001 -
0.7824 1600 0.0001 -
0.8068 1650 0.0001 -
0.8313 1700 0.0001 -
0.8557 1750 0.0011 -
0.8802 1800 0.0002 -
0.9046 1850 0.0001 -
0.9291 1900 0.0001 -
0.9535 1950 0.0002 -
0.9780 2000 0.0001 -
1.0024 2050 0.0001 -
1.0269 2100 0.0002 -
1.0513 2150 0.0001 -
1.0758 2200 0.0001 -
1.1002 2250 0.0001 -
1.1247 2300 0.0001 -
1.1491 2350 0.0001 -
1.1736 2400 0.0001 -
1.1980 2450 0.0001 -
1.2225 2500 0.0001 -
1.2469 2550 0.0001 -
1.2714 2600 0.0001 -
1.2958 2650 0.0001 -
1.3203 2700 0.0001 -
1.3447 2750 0.0001 -
1.3692 2800 0.0001 -
1.3936 2850 0.0001 -
1.4181 2900 0.0001 -
1.4425 2950 0.0001 -
1.4670 3000 0.0001 -
1.4914 3050 0.0001 -
1.5159 3100 0.0001 -
1.5403 3150 0.0001 -
1.5648 3200 0.0001 -
1.5892 3250 0.0001 -
1.6137 3300 0.0001 -
1.6381 3350 0.0001 -
1.6626 3400 0.0001 -
1.6870 3450 0.0001 -
1.7115 3500 0.0001 -
1.7359 3550 0.0 -
1.7604 3600 0.0001 -
1.7848 3650 0.0001 -
1.8093 3700 0.0001 -
1.8337 3750 0.0 -
1.8582 3800 0.0001 -
1.8826 3850 0.0001 -
1.9071 3900 0.0001 -
1.9315 3950 0.0 -
1.9560 4000 0.0 -
1.9804 4050 0.0001 -

Framework Versions

  • Python: 3.10.13
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.39.0
  • PyTorch: 2.2.2+cu121
  • Datasets: 2.19.2
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
5
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Shankhdhar/classifier_woog_firstbud

Finetuned
(250)
this model

Evaluation results