|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- maths |
|
- gpt2 |
|
- mathgpt2 |
|
- trl |
|
- sft |
|
datasets: |
|
- meta-math/MetaMathQA |
|
- ArtifactAI/arxiv-math-instruct-50k |
|
pipeline_tag: text-generation |
|
widget: |
|
- text: Which motion is formed by an incident particle? |
|
example_title: Example 1 |
|
- text: What type of diffusional modeling is used for diffusion? |
|
example_title: Example 2 |
|
model-index: |
|
- name: math_gpt2_sft |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 22.87 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 30.41 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 25.06 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 37.62 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 51.54 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 0.68 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
This model is a finetuned version of ```Sharathhebbar24/math_gpt2``` using ```meta-math/MetaMathQA``` |
|
|
|
## Model description |
|
|
|
GPT-2 is a transformers model pre-trained on a very large corpus of English data in a self-supervised fashion. This |
|
means it was pre-trained on the raw texts only, with no humans labeling them in any way (which is why it can use lots |
|
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, |
|
it was trained to guess the next word in sentences. |
|
|
|
More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, |
|
shifting one token (word or piece of word) to the right. The model uses a masking mechanism to make sure the |
|
predictions for the token `i` only use the inputs from `1` to `i` but not the future tokens. |
|
|
|
This way, the model learns an inner representation of the English language that can then be used to extract features |
|
useful for downstream tasks. The model is best at what it was trained for, however, which is generating texts from a |
|
prompt. |
|
|
|
### To use this model |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, AutoModelForCausalLM |
|
>>> model_name = "Sharathhebbar24/math_gpt2_sft" |
|
>>> model = AutoModelForCausalLM.from_pretrained(model_name) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
>>> def generate_text(prompt): |
|
>>> inputs = tokenizer.encode(prompt, return_tensors='pt') |
|
>>> outputs = model.generate(inputs, max_length=64, pad_token_id=tokenizer.eos_token_id) |
|
>>> generated = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
>>> return generated[:generated.rfind(".")+1] |
|
>>> prompt = "Gracie and Joe are choosing numbers on the complex plane. Joe chooses the point $1+2i$. Gracie chooses $-1+i$. How far apart are Gracie and Joe's points?" |
|
>>> res = generate_text(prompt) |
|
>>> res |
|
``` |
|
|
|
# Benchmark / Evaluation |
|
|
|
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8k | |
|
| ------- | -------- | -------- | ------- | -------- | -------- | ------- | -------- | |
|
| Sharathhebbar24/math_gpt2_sft | 28.503 | 22.87 | 30.41 | 25.06 | 37.62 | 51.54 | 0.68 | |
|
|
|
```python |
|
{ |
|
"all": { |
|
"acc": 0.25082189621988066, |
|
"acc_stderr": 0.030526589726831692, |
|
"acc_norm": 0.25112870356236633, |
|
"acc_norm_stderr": 0.03129390389566968, |
|
"mc1": 0.24112607099143207, |
|
"mc1_stderr": 0.014974827279752334, |
|
"mc2": 0.3762297840067963, |
|
"mc2_stderr": 0.01445991036363257 |
|
}, |
|
"harness|arc:challenge|25": { |
|
"acc": 0.20563139931740615, |
|
"acc_stderr": 0.01181074526074258, |
|
"acc_norm": 0.22866894197952217, |
|
"acc_norm_stderr": 0.012272853582540799 |
|
}, |
|
"harness|hellaswag|10": { |
|
"acc": 0.2884883489344752, |
|
"acc_stderr": 0.004521334761709224, |
|
"acc_norm": 0.30412268472415854, |
|
"acc_norm_stderr": 0.00459094683972719 |
|
}, |
|
"harness|hendrycksTest-abstract_algebra|5": { |
|
"acc": 0.19, |
|
"acc_stderr": 0.03942772444036625, |
|
"acc_norm": 0.19, |
|
"acc_norm_stderr": 0.03942772444036625 |
|
}, |
|
"harness|hendrycksTest-anatomy|5": { |
|
"acc": 0.2074074074074074, |
|
"acc_stderr": 0.03502553170678319, |
|
"acc_norm": 0.2074074074074074, |
|
"acc_norm_stderr": 0.03502553170678319 |
|
}, |
|
"harness|hendrycksTest-astronomy|5": { |
|
"acc": 0.17763157894736842, |
|
"acc_stderr": 0.031103182383123398, |
|
"acc_norm": 0.17763157894736842, |
|
"acc_norm_stderr": 0.031103182383123398 |
|
}, |
|
"harness|hendrycksTest-business_ethics|5": { |
|
"acc": 0.19, |
|
"acc_stderr": 0.03942772444036622, |
|
"acc_norm": 0.19, |
|
"acc_norm_stderr": 0.03942772444036622 |
|
}, |
|
"harness|hendrycksTest-clinical_knowledge|5": { |
|
"acc": 0.2188679245283019, |
|
"acc_stderr": 0.025447863825108618, |
|
"acc_norm": 0.2188679245283019, |
|
"acc_norm_stderr": 0.025447863825108618 |
|
}, |
|
"harness|hendrycksTest-college_biology|5": { |
|
"acc": 0.25, |
|
"acc_stderr": 0.03621034121889507, |
|
"acc_norm": 0.25, |
|
"acc_norm_stderr": 0.03621034121889507 |
|
}, |
|
"harness|hendrycksTest-college_chemistry|5": { |
|
"acc": 0.2, |
|
"acc_stderr": 0.04020151261036845, |
|
"acc_norm": 0.2, |
|
"acc_norm_stderr": 0.04020151261036845 |
|
}, |
|
"harness|hendrycksTest-college_computer_science|5": { |
|
"acc": 0.32, |
|
"acc_stderr": 0.046882617226215034, |
|
"acc_norm": 0.32, |
|
"acc_norm_stderr": 0.046882617226215034 |
|
}, |
|
"harness|hendrycksTest-college_mathematics|5": { |
|
"acc": 0.24, |
|
"acc_stderr": 0.042923469599092816, |
|
"acc_norm": 0.24, |
|
"acc_norm_stderr": 0.042923469599092816 |
|
}, |
|
"harness|hendrycksTest-college_medicine|5": { |
|
"acc": 0.21965317919075145, |
|
"acc_stderr": 0.031568093627031744, |
|
"acc_norm": 0.21965317919075145, |
|
"acc_norm_stderr": 0.031568093627031744 |
|
}, |
|
"harness|hendrycksTest-college_physics|5": { |
|
"acc": 0.23529411764705882, |
|
"acc_stderr": 0.04220773659171453, |
|
"acc_norm": 0.23529411764705882, |
|
"acc_norm_stderr": 0.04220773659171453 |
|
}, |
|
"harness|hendrycksTest-computer_security|5": { |
|
"acc": 0.23, |
|
"acc_stderr": 0.04229525846816505, |
|
"acc_norm": 0.23, |
|
"acc_norm_stderr": 0.04229525846816505 |
|
}, |
|
"harness|hendrycksTest-conceptual_physics|5": { |
|
"acc": 0.2680851063829787, |
|
"acc_stderr": 0.028957342788342347, |
|
"acc_norm": 0.2680851063829787, |
|
"acc_norm_stderr": 0.028957342788342347 |
|
}, |
|
"harness|hendrycksTest-econometrics|5": { |
|
"acc": 0.24561403508771928, |
|
"acc_stderr": 0.040493392977481404, |
|
"acc_norm": 0.24561403508771928, |
|
"acc_norm_stderr": 0.040493392977481404 |
|
}, |
|
"harness|hendrycksTest-electrical_engineering|5": { |
|
"acc": 0.2482758620689655, |
|
"acc_stderr": 0.036001056927277716, |
|
"acc_norm": 0.2482758620689655, |
|
"acc_norm_stderr": 0.036001056927277716 |
|
}, |
|
"harness|hendrycksTest-elementary_mathematics|5": { |
|
"acc": 0.24074074074074073, |
|
"acc_stderr": 0.0220190800122179, |
|
"acc_norm": 0.24074074074074073, |
|
"acc_norm_stderr": 0.0220190800122179 |
|
}, |
|
"harness|hendrycksTest-formal_logic|5": { |
|
"acc": 0.23015873015873015, |
|
"acc_stderr": 0.03764950879790605, |
|
"acc_norm": 0.23015873015873015, |
|
"acc_norm_stderr": 0.03764950879790605 |
|
}, |
|
"harness|hendrycksTest-global_facts|5": { |
|
"acc": 0.18, |
|
"acc_stderr": 0.038612291966536934, |
|
"acc_norm": 0.18, |
|
"acc_norm_stderr": 0.038612291966536934 |
|
}, |
|
"harness|hendrycksTest-high_school_biology|5": { |
|
"acc": 0.25483870967741934, |
|
"acc_stderr": 0.024790118459332208, |
|
"acc_norm": 0.25483870967741934, |
|
"acc_norm_stderr": 0.024790118459332208 |
|
}, |
|
"harness|hendrycksTest-high_school_chemistry|5": { |
|
"acc": 0.19704433497536947, |
|
"acc_stderr": 0.02798672466673622, |
|
"acc_norm": 0.19704433497536947, |
|
"acc_norm_stderr": 0.02798672466673622 |
|
}, |
|
"harness|hendrycksTest-high_school_computer_science|5": { |
|
"acc": 0.22, |
|
"acc_stderr": 0.041633319989322695, |
|
"acc_norm": 0.22, |
|
"acc_norm_stderr": 0.041633319989322695 |
|
}, |
|
"harness|hendrycksTest-high_school_european_history|5": { |
|
"acc": 0.19393939393939394, |
|
"acc_stderr": 0.0308741451365621, |
|
"acc_norm": 0.19393939393939394, |
|
"acc_norm_stderr": 0.0308741451365621 |
|
}, |
|
"harness|hendrycksTest-high_school_geography|5": { |
|
"acc": 0.3484848484848485, |
|
"acc_stderr": 0.033948539651564025, |
|
"acc_norm": 0.3484848484848485, |
|
"acc_norm_stderr": 0.033948539651564025 |
|
}, |
|
"harness|hendrycksTest-high_school_government_and_politics|5": { |
|
"acc": 0.32124352331606215, |
|
"acc_stderr": 0.033699508685490674, |
|
"acc_norm": 0.32124352331606215, |
|
"acc_norm_stderr": 0.033699508685490674 |
|
}, |
|
"harness|hendrycksTest-high_school_macroeconomics|5": { |
|
"acc": 0.23333333333333334, |
|
"acc_stderr": 0.021444547301560476, |
|
"acc_norm": 0.23333333333333334, |
|
"acc_norm_stderr": 0.021444547301560476 |
|
}, |
|
"harness|hendrycksTest-high_school_mathematics|5": { |
|
"acc": 0.2851851851851852, |
|
"acc_stderr": 0.027528599210340492, |
|
"acc_norm": 0.2851851851851852, |
|
"acc_norm_stderr": 0.027528599210340492 |
|
}, |
|
"harness|hendrycksTest-high_school_microeconomics|5": { |
|
"acc": 0.29831932773109243, |
|
"acc_stderr": 0.029719142876342856, |
|
"acc_norm": 0.29831932773109243, |
|
"acc_norm_stderr": 0.029719142876342856 |
|
}, |
|
"harness|hendrycksTest-high_school_physics|5": { |
|
"acc": 0.2781456953642384, |
|
"acc_stderr": 0.03658603262763744, |
|
"acc_norm": 0.2781456953642384, |
|
"acc_norm_stderr": 0.03658603262763744 |
|
}, |
|
"harness|hendrycksTest-high_school_psychology|5": { |
|
"acc": 0.26788990825688075, |
|
"acc_stderr": 0.018987462257978652, |
|
"acc_norm": 0.26788990825688075, |
|
"acc_norm_stderr": 0.018987462257978652 |
|
}, |
|
"harness|hendrycksTest-high_school_statistics|5": { |
|
"acc": 0.4351851851851852, |
|
"acc_stderr": 0.03381200005643525, |
|
"acc_norm": 0.4351851851851852, |
|
"acc_norm_stderr": 0.03381200005643525 |
|
}, |
|
"harness|hendrycksTest-high_school_us_history|5": { |
|
"acc": 0.2647058823529412, |
|
"acc_stderr": 0.0309645179269234, |
|
"acc_norm": 0.2647058823529412, |
|
"acc_norm_stderr": 0.0309645179269234 |
|
}, |
|
"harness|hendrycksTest-high_school_world_history|5": { |
|
"acc": 0.28270042194092826, |
|
"acc_stderr": 0.029312814153955927, |
|
"acc_norm": 0.28270042194092826, |
|
"acc_norm_stderr": 0.029312814153955927 |
|
}, |
|
"harness|hendrycksTest-human_aging|5": { |
|
"acc": 0.31390134529147984, |
|
"acc_stderr": 0.031146796482972465, |
|
"acc_norm": 0.31390134529147984, |
|
"acc_norm_stderr": 0.031146796482972465 |
|
}, |
|
"harness|hendrycksTest-human_sexuality|5": { |
|
"acc": 0.2595419847328244, |
|
"acc_stderr": 0.03844876139785271, |
|
"acc_norm": 0.2595419847328244, |
|
"acc_norm_stderr": 0.03844876139785271 |
|
}, |
|
"harness|hendrycksTest-international_law|5": { |
|
"acc": 0.2231404958677686, |
|
"acc_stderr": 0.03800754475228733, |
|
"acc_norm": 0.2231404958677686, |
|
"acc_norm_stderr": 0.03800754475228733 |
|
}, |
|
"harness|hendrycksTest-jurisprudence|5": { |
|
"acc": 0.25925925925925924, |
|
"acc_stderr": 0.042365112580946336, |
|
"acc_norm": 0.25925925925925924, |
|
"acc_norm_stderr": 0.042365112580946336 |
|
}, |
|
"harness|hendrycksTest-logical_fallacies|5": { |
|
"acc": 0.25153374233128833, |
|
"acc_stderr": 0.03408997886857529, |
|
"acc_norm": 0.25153374233128833, |
|
"acc_norm_stderr": 0.03408997886857529 |
|
}, |
|
"harness|hendrycksTest-machine_learning|5": { |
|
"acc": 0.29464285714285715, |
|
"acc_stderr": 0.043270409325787296, |
|
"acc_norm": 0.29464285714285715, |
|
"acc_norm_stderr": 0.043270409325787296 |
|
}, |
|
"harness|hendrycksTest-management|5": { |
|
"acc": 0.17475728155339806, |
|
"acc_stderr": 0.037601780060266224, |
|
"acc_norm": 0.17475728155339806, |
|
"acc_norm_stderr": 0.037601780060266224 |
|
}, |
|
"harness|hendrycksTest-marketing|5": { |
|
"acc": 0.20085470085470086, |
|
"acc_stderr": 0.026246772946890488, |
|
"acc_norm": 0.20085470085470086, |
|
"acc_norm_stderr": 0.026246772946890488 |
|
}, |
|
"harness|hendrycksTest-medical_genetics|5": { |
|
"acc": 0.3, |
|
"acc_stderr": 0.046056618647183814, |
|
"acc_norm": 0.3, |
|
"acc_norm_stderr": 0.046056618647183814 |
|
}, |
|
"harness|hendrycksTest-miscellaneous|5": { |
|
"acc": 0.23499361430395913, |
|
"acc_stderr": 0.01516202415227844, |
|
"acc_norm": 0.23499361430395913, |
|
"acc_norm_stderr": 0.01516202415227844 |
|
}, |
|
"harness|hendrycksTest-moral_disputes|5": { |
|
"acc": 0.23699421965317918, |
|
"acc_stderr": 0.02289408248992599, |
|
"acc_norm": 0.23699421965317918, |
|
"acc_norm_stderr": 0.02289408248992599 |
|
}, |
|
"harness|hendrycksTest-moral_scenarios|5": { |
|
"acc": 0.23798882681564246, |
|
"acc_stderr": 0.014242630070574915, |
|
"acc_norm": 0.23798882681564246, |
|
"acc_norm_stderr": 0.014242630070574915 |
|
}, |
|
"harness|hendrycksTest-nutrition|5": { |
|
"acc": 0.23202614379084968, |
|
"acc_stderr": 0.024170840879341005, |
|
"acc_norm": 0.23202614379084968, |
|
"acc_norm_stderr": 0.024170840879341005 |
|
}, |
|
"harness|hendrycksTest-philosophy|5": { |
|
"acc": 0.1864951768488746, |
|
"acc_stderr": 0.02212243977248077, |
|
"acc_norm": 0.1864951768488746, |
|
"acc_norm_stderr": 0.02212243977248077 |
|
}, |
|
"harness|hendrycksTest-prehistory|5": { |
|
"acc": 0.24074074074074073, |
|
"acc_stderr": 0.02378858355165854, |
|
"acc_norm": 0.24074074074074073, |
|
"acc_norm_stderr": 0.02378858355165854 |
|
}, |
|
"harness|hendrycksTest-professional_accounting|5": { |
|
"acc": 0.2695035460992908, |
|
"acc_stderr": 0.026469036818590627, |
|
"acc_norm": 0.2695035460992908, |
|
"acc_norm_stderr": 0.026469036818590627 |
|
}, |
|
"harness|hendrycksTest-professional_law|5": { |
|
"acc": 0.2529335071707953, |
|
"acc_stderr": 0.011102268713839989, |
|
"acc_norm": 0.2529335071707953, |
|
"acc_norm_stderr": 0.011102268713839989 |
|
}, |
|
"harness|hendrycksTest-professional_medicine|5": { |
|
"acc": 0.4411764705882353, |
|
"acc_stderr": 0.030161911930767102, |
|
"acc_norm": 0.4411764705882353, |
|
"acc_norm_stderr": 0.030161911930767102 |
|
}, |
|
"harness|hendrycksTest-professional_psychology|5": { |
|
"acc": 0.25, |
|
"acc_stderr": 0.01751781884501444, |
|
"acc_norm": 0.25, |
|
"acc_norm_stderr": 0.01751781884501444 |
|
}, |
|
"harness|hendrycksTest-public_relations|5": { |
|
"acc": 0.21818181818181817, |
|
"acc_stderr": 0.03955932861795833, |
|
"acc_norm": 0.21818181818181817, |
|
"acc_norm_stderr": 0.03955932861795833 |
|
}, |
|
"harness|hendrycksTest-security_studies|5": { |
|
"acc": 0.20408163265306123, |
|
"acc_stderr": 0.025801283475090506, |
|
"acc_norm": 0.20408163265306123, |
|
"acc_norm_stderr": 0.025801283475090506 |
|
}, |
|
"harness|hendrycksTest-sociology|5": { |
|
"acc": 0.24378109452736318, |
|
"acc_stderr": 0.03036049015401465, |
|
"acc_norm": 0.24378109452736318, |
|
"acc_norm_stderr": 0.03036049015401465 |
|
}, |
|
"harness|hendrycksTest-us_foreign_policy|5": { |
|
"acc": 0.24, |
|
"acc_stderr": 0.04292346959909281, |
|
"acc_norm": 0.24, |
|
"acc_norm_stderr": 0.04292346959909281 |
|
}, |
|
"harness|hendrycksTest-virology|5": { |
|
"acc": 0.22289156626506024, |
|
"acc_stderr": 0.03240004825594687, |
|
"acc_norm": 0.22289156626506024, |
|
"acc_norm_stderr": 0.03240004825594687 |
|
}, |
|
"harness|hendrycksTest-world_religions|5": { |
|
"acc": 0.3216374269005848, |
|
"acc_stderr": 0.03582529442573122, |
|
"acc_norm": 0.3216374269005848, |
|
"acc_norm_stderr": 0.03582529442573122 |
|
}, |
|
"harness|truthfulqa:mc|0": { |
|
"mc1": 0.24112607099143207, |
|
"mc1_stderr": 0.014974827279752334, |
|
"mc2": 0.3762297840067963, |
|
"mc2_stderr": 0.01445991036363257 |
|
}, |
|
"harness|winogrande|5": { |
|
"acc": 0.5153906866614049, |
|
"acc_stderr": 0.014045826789783668 |
|
}, |
|
"harness|gsm8k|5": { |
|
"acc": 0.006823351023502654, |
|
"acc_stderr": 0.0022675371022544823 |
|
} |
|
} |
|
|
|
|
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Sharathhebbar24__math_gpt2_sft) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |28.03| |
|
|AI2 Reasoning Challenge (25-Shot)|22.87| |
|
|HellaSwag (10-Shot) |30.41| |
|
|MMLU (5-Shot) |25.06| |
|
|TruthfulQA (0-shot) |37.62| |
|
|Winogrande (5-shot) |51.54| |
|
|GSM8k (5-shot) | 0.68| |
|
|
|
|