BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from sentence-transformers/msmarco-distilbert-base-v4. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/msmarco-distilbert-base-v4
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Shashwat13333/msmarco-distilbert-base-v4")
# Run inference
sentences = [
"What steps do you take to understand a business's needs?",
'How do you customize your DevOps solutions for different industries?\nWe understand that each industry has unique challenges and requirements. Our approach involves a thorough analysis of your business needs, industry standards, and regulatory requirements to tailor a DevOps solution that meets your specific objectives',
'Our Vision Be a partner for industry verticals on the inevitable journey towards enterprise transformation and future readiness, by harnessing the growing power of Artificial Intelligence, Machine Learning, Data Science and emerging methodologies, with immediacy of impact and swiftness of outcome.Our Mission\nTo decode data, and code new intelligence into products and automation, engineer, develop and deploy systems and applications that redefine experiences and realign business growth.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.039 | 0.026 | 0.0519 | 0.0519 | 0.0649 |
cosine_accuracy@3 | 0.4805 | 0.4935 | 0.4675 | 0.4416 | 0.4156 |
cosine_accuracy@5 | 0.5714 | 0.5844 | 0.5195 | 0.5584 | 0.5065 |
cosine_accuracy@10 | 0.6494 | 0.6494 | 0.6234 | 0.6623 | 0.5974 |
cosine_precision@1 | 0.039 | 0.026 | 0.0519 | 0.0519 | 0.0649 |
cosine_precision@3 | 0.1602 | 0.1645 | 0.1558 | 0.1472 | 0.1385 |
cosine_precision@5 | 0.1143 | 0.1169 | 0.1039 | 0.1117 | 0.1013 |
cosine_precision@10 | 0.0649 | 0.0649 | 0.0623 | 0.0662 | 0.0597 |
cosine_recall@1 | 0.039 | 0.026 | 0.0519 | 0.0519 | 0.0649 |
cosine_recall@3 | 0.4805 | 0.4935 | 0.4675 | 0.4416 | 0.4156 |
cosine_recall@5 | 0.5714 | 0.5844 | 0.5195 | 0.5584 | 0.5065 |
cosine_recall@10 | 0.6494 | 0.6494 | 0.6234 | 0.6623 | 0.5974 |
cosine_ndcg@10 | 0.3349 | 0.3382 | 0.338 | 0.3429 | 0.3229 |
cosine_mrr@10 | 0.2338 | 0.237 | 0.2458 | 0.2407 | 0.2348 |
cosine_map@100 | 0.2465 | 0.2486 | 0.2597 | 0.2508 | 0.2482 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 154 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 154 samples:
anchor positive type string string details - min: 7 tokens
- mean: 12.43 tokens
- max: 20 tokens
- min: 20 tokens
- mean: 126.6 tokens
- max: 378 tokens
- Samples:
anchor positive What kind of websites can you help us with?
CLIENT TESTIMONIALS
Worked with TCZ on two business critical website development projects. The TCZ team is a group of experts in their respective domains and have helped us with excellent end-to-end development of a website right from the conceptualization to implementation and maintenance. By Dr. Kunal Joshi - Healthcare Marketing & Strategy Professional
TCZ helped us with our new website launch in a seamless manner. Through all our discussions, they made sure to have the website designed as we had envisioned it to be. Thank you team TCZ.
By Dr. Sarita Ahlawat - Managing Director and Co-Founder, Botlab DynamicsWhat does DevSecOps mean?
How do you ensure the security of our DevOps pipeline?
Security is a top priority in our DevOps solutions. We implement DevSecOps practices, integrating security measures into the CI/CD pipeline from the outset. This includes automated security scans, compliance checks, and vulnerability assessments to ensure your infrastructure is securedo you work with tech like nlp ?
What AI solutions does Techchefz specialize in?
We specialize in a range of AI solutions including recommendation engines, NLP, computer vision, customer segmentation, predictive analytics, operational efficiency through machine learning, risk management, and conversational AI for customer service. - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochgradient_accumulation_steps
: 4learning_rate
: 1e-05weight_decay
: 0.01num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedpush_to_hub
: Truehub_model_id
: Shashwat13333/msmarco-distilbert-base-v4_1push_to_hub_model_id
: msmarco-distilbert-base-v4_1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: Shashwat13333/msmarco-distilbert-base-v4_1hub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: msmarco-distilbert-base-v4_1push_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.2 | 1 | 4.0076 | - | - | - | - | - |
1.0 | 5 | 4.8662 | 0.3288 | 0.3390 | 0.3208 | 0.3246 | 0.2749 |
2.0 | 10 | 4.1825 | 0.3288 | 0.3456 | 0.3306 | 0.3405 | 0.2954 |
3.0 | 15 | 3.048 | 0.3329 | 0.3313 | 0.3346 | 0.3392 | 0.3227 |
4.0 | 20 | 2.5029 | 0.3349 | 0.3382 | 0.338 | 0.3429 | 0.3229 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Shashwat13333/msmarco-distilbert-base-v4_1
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.039
- Cosine Accuracy@3 on dim 768self-reported0.481
- Cosine Accuracy@5 on dim 768self-reported0.571
- Cosine Accuracy@10 on dim 768self-reported0.649
- Cosine Precision@1 on dim 768self-reported0.039
- Cosine Precision@3 on dim 768self-reported0.160
- Cosine Precision@5 on dim 768self-reported0.114
- Cosine Precision@10 on dim 768self-reported0.065
- Cosine Recall@1 on dim 768self-reported0.039
- Cosine Recall@3 on dim 768self-reported0.481