Shashwat13333 commited on
Commit
caf671e
·
verified ·
1 Parent(s): 724be93

Model save

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,901 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:154
11
+ - loss:MatryoshkaLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: sentence-transformers/msmarco-distilbert-base-v4
14
+ widget:
15
+ - source_sentence: Hey, what career oppotunities do you provide?
16
+ sentences:
17
+ - TechChefz Digital is present in two countries. Its headquarters is in Noida, India,
18
+ with additional offices in Delaware, United States, and Gauram Nagar, Delhi, India.
19
+ - 'Customer Experience & Marketing Technology
20
+
21
+ Covering journey science, content architecture, personalization, campaign management,
22
+ and conversion rate optimization, driving customer experiences and engagements
23
+
24
+
25
+ Enterprise Platforms & Systems Integration
26
+
27
+ Platform selection services in CMS, e-commerce, and learning management systems,
28
+ with a focus on marketplace commerce
29
+
30
+
31
+ Analytics, Data Science & Business Intelligence
32
+
33
+ Engage in analytics, data science, and machine learning to derive insights. Implement
34
+ intelligent search, recommendation engines, and predictive models for optimization
35
+ and enhanced decision-making. TechChefz Digital seeks passionate individuals to
36
+ join our innovative team. We offer dynamic work environments fostering creativity
37
+ and expertise. Whether you''re seasoned or fresh, exciting career opportunities
38
+ await in technology, consulting, design, and more. Join us in shaping digital
39
+ transformation and unlocking possibilities for clients and the industry.
40
+
41
+ 7+ Years Industry Experience
42
+
43
+
44
+ 300+ Enthusiasts
45
+
46
+
47
+ 80% Employee Retention Rate
48
+
49
+ '
50
+ - 'How long does it take to develop an e-commerce website?
51
+
52
+ The development time for an e-commerce website can vary widely depending on its
53
+ complexity, features, and the platform chosen. A basic online store might take
54
+ a few weeks to set up, while a custom, feature-rich site could take several months
55
+ to develop. Clear communication of your requirements and timely decision-making
56
+ can help streamline the process.'
57
+ - source_sentence: What technologies are used for web development?
58
+ sentences:
59
+ - 'Our Featured Insights
60
+
61
+ Simplifying Image Loading in React with Lazy Loading and Intersection Observer
62
+ API
63
+
64
+
65
+ What Is React Js?
66
+
67
+
68
+ The Role of Artificial Intelligence (AI) in Personalizing Digital Marketing Campaigns
69
+
70
+
71
+ Mastering Personalization in Digital Marketing: Tailoring Campaigns for Success
72
+
73
+
74
+ How Customer Experience Drives Your Business Growth
75
+
76
+
77
+ Which is the best CMS for your Digital Transformation Journey?
78
+
79
+
80
+ The Art of Test Case Creation Templates'
81
+ - 'DISCOVER TECHSTACK
82
+
83
+ Empowering solutions
84
+
85
+ with cutting-edge technology stacks
86
+
87
+ Web & Mobile Development
88
+
89
+ Crafting dynamic and engaging online experiences tailored to your brand''s vision
90
+ and objectives.
91
+
92
+ Content Management Systems
93
+
94
+ 3D, AR & VR
95
+
96
+ Learning Management System
97
+
98
+ Commerce
99
+
100
+ Analytics
101
+
102
+ Personalization & Marketing Cloud
103
+
104
+ Cloud & DevSecOps
105
+
106
+ Tech Stack
107
+
108
+ HTML, JS, CSS
109
+
110
+ React JS
111
+
112
+ Angular JS
113
+
114
+ Vue JS
115
+
116
+ Next JS
117
+
118
+ React Native
119
+
120
+ Flutter
121
+
122
+ Node JS
123
+
124
+ Python
125
+
126
+ Frappe
127
+
128
+ Java
129
+
130
+ Spring Boot
131
+
132
+ Go Lang
133
+
134
+ Mongo DB
135
+
136
+ PostgreSQL
137
+
138
+ MySQL'
139
+ - 'Can you help migrate our existing infrastructure to a DevOps model?
140
+
141
+ Yes, we specialize in transitioning traditional IT infrastructure to a DevOps
142
+ model. Our process includes assessing your current setup, planning the migration,
143
+ implementing the necessary tools and practices, and providing ongoing support
144
+ to ensure a smooth transition.'
145
+ - source_sentence: Where is TechChefz based?
146
+ sentences:
147
+ - 'CLIENT TESTIMONIALS
148
+
149
+ Worked with TCZ on two business critical website development projects. The TCZ
150
+ team is a group of experts in their respective domains and have helped us with
151
+ excellent end-to-end development of a website right from the conceptualization
152
+ to implementation and maintenance. By Dr. Kunal Joshi - Healthcare Marketing &
153
+ Strategy Professional
154
+
155
+
156
+ TCZ helped us with our new website launch in a seamless manner. Through all our
157
+ discussions, they made sure to have the website designed as we had envisioned
158
+ it to be. Thank you team TCZ.
159
+
160
+ By Dr. Sarita Ahlawat - Managing Director and Co-Founder, Botlab Dynamics '
161
+ - TechChefz Digital is present in two countries. Its headquarters is in Noida, India,
162
+ with additional offices in Delaware, United States, and Gauram Nagar, Delhi, India.
163
+ - " What we do\n\nDigital Strategy\nCreating digital frameworks that transform\
164
+ \ your digital enterprise and produce a return on investment.\n\nPlatform Selection\n\
165
+ Helping you select the optimal digital experience, commerce, cloud and marketing\
166
+ \ platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable\
167
+ \ and agile enterprise digital platforms, along with multi-platform integrations.\n\
168
+ \nProduct Builds\nHelp you ideate, strategize, and engineer your product with\
169
+ \ help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and\
170
+ \ augment your existing team to solve your hiring challenges with our easy to\
171
+ \ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\
172
+ \ your business-critical applications, data, and IT workloads, along with Application\
173
+ \ maintenance and operations\n"
174
+ - source_sentence: Will you assess our current infrastructure before migrating?
175
+ sentences:
176
+ - 'Introducing the world of Global EdTech Firm.
177
+
178
+
179
+ In this project, We implemented a comprehensive digital platform strategy to unify
180
+ user experience across platforms, integrating diverse tech stacks and specialized
181
+ platforms to enhance customer engagement and streamline operations.
182
+
183
+ Develop tailored online tutoring and learning hub platforms, leveraging AI/ML
184
+ for personalized learning experiences, thus accelerating user journeys and improving
185
+ conversion rates.
186
+
187
+ Provide managed services for seamless application support and platform stabilization,
188
+ optimizing operational efficiency and enabling scalable B2B subscriptions for
189
+ schools and districts, facilitating easy onboarding and growth across the US States.
190
+
191
+
192
+ We also achieved 200% Improvement in Courses & Content being delivered to Students.
193
+ 50% Increase in Student’s Retention 150%, Increase in Teacher & Tutor Retention.'
194
+ - TechChefz Digital has established its presence in two countries, showcasing its
195
+ global reach and influence. The company’s headquarters is strategically located
196
+ in Noida, India, serving as the central hub for its operations and leadership.
197
+ In addition to the headquarters, TechChefz Digital has expanded its footprint
198
+ with offices in Delaware, United States, allowing the company to cater to the
199
+ North American market with ease and efficiency.
200
+ - 'Can you help migrate our existing infrastructure to a DevOps model?
201
+
202
+ Yes, we specialize in transitioning traditional IT infrastructure to a DevOps
203
+ model. Our process includes assessing your current setup, planning the migration,
204
+ implementing the necessary tools and practices, and providing ongoing support
205
+ to ensure a smooth transition.'
206
+ - source_sentence: What steps do you take to understand a business's needs?
207
+ sentences:
208
+ - 'How do you customize your DevOps solutions for different industries?
209
+
210
+ We understand that each industry has unique challenges and requirements. Our approach
211
+ involves a thorough analysis of your business needs, industry standards, and regulatory
212
+ requirements to tailor a DevOps solution that meets your specific objectives'
213
+ - "Inception: Pioneering the Digital Frontier In our foundational year, TechChefz\
214
+ \ embarked on a journey of digital transformation, laying the groundwork for our\
215
+ \ future endeavors. We began working on Cab Accelerator Apps akin to Uber and\
216
+ \ Ola, deploying them across Europe, Africa, and Australia, marking our initial\
217
+ \ foray into global markets. Alongside, we successfully delivered technology trainings\
218
+ \ across USA & India. \nqueries-techchefz-website\nqueries-techchefz-website\n\
219
+ 100%\n10\nA4\n\nAccelerating Momentum: A year of strategic partnerships & Transformative\
220
+ \ Projects. In 2018, TechChefz continued to build on its strong foundation, expanding\
221
+ \ its global footprint and forging strategic partnerships. Our collaboration with\
222
+ \ digital agencies and system integrators propelled us into enterprise accounts,\
223
+ \ focusing on digital experience development. This year marked significant collaborations\
224
+ \ with leading automotive brands and financial institutions, enhancing our portfolio\
225
+ \ and establishing TechChefz as a trusted partner in the industry. \n "
226
+ - 'Our Vision Be a partner for industry verticals on the inevitable journey towards
227
+ enterprise transformation and future readiness, by harnessing the growing power
228
+ of Artificial Intelligence, Machine Learning, Data Science and emerging methodologies,
229
+ with immediacy of impact and swiftness of outcome.Our Mission
230
+
231
+ To decode data, and code new intelligence into products and automation, engineer,
232
+ develop and deploy systems and applications that redefine experiences and realign
233
+ business growth.'
234
+ pipeline_tag: sentence-similarity
235
+ library_name: sentence-transformers
236
+ metrics:
237
+ - cosine_accuracy@1
238
+ - cosine_accuracy@3
239
+ - cosine_accuracy@5
240
+ - cosine_accuracy@10
241
+ - cosine_precision@1
242
+ - cosine_precision@3
243
+ - cosine_precision@5
244
+ - cosine_precision@10
245
+ - cosine_recall@1
246
+ - cosine_recall@3
247
+ - cosine_recall@5
248
+ - cosine_recall@10
249
+ - cosine_ndcg@10
250
+ - cosine_mrr@10
251
+ - cosine_map@100
252
+ model-index:
253
+ - name: BGE base Financial Matryoshka
254
+ results:
255
+ - task:
256
+ type: information-retrieval
257
+ name: Information Retrieval
258
+ dataset:
259
+ name: dim 768
260
+ type: dim_768
261
+ metrics:
262
+ - type: cosine_accuracy@1
263
+ value: 0.03896103896103896
264
+ name: Cosine Accuracy@1
265
+ - type: cosine_accuracy@3
266
+ value: 0.4805194805194805
267
+ name: Cosine Accuracy@3
268
+ - type: cosine_accuracy@5
269
+ value: 0.5714285714285714
270
+ name: Cosine Accuracy@5
271
+ - type: cosine_accuracy@10
272
+ value: 0.6493506493506493
273
+ name: Cosine Accuracy@10
274
+ - type: cosine_precision@1
275
+ value: 0.03896103896103896
276
+ name: Cosine Precision@1
277
+ - type: cosine_precision@3
278
+ value: 0.1601731601731602
279
+ name: Cosine Precision@3
280
+ - type: cosine_precision@5
281
+ value: 0.11428571428571425
282
+ name: Cosine Precision@5
283
+ - type: cosine_precision@10
284
+ value: 0.06493506493506492
285
+ name: Cosine Precision@10
286
+ - type: cosine_recall@1
287
+ value: 0.03896103896103896
288
+ name: Cosine Recall@1
289
+ - type: cosine_recall@3
290
+ value: 0.4805194805194805
291
+ name: Cosine Recall@3
292
+ - type: cosine_recall@5
293
+ value: 0.5714285714285714
294
+ name: Cosine Recall@5
295
+ - type: cosine_recall@10
296
+ value: 0.6493506493506493
297
+ name: Cosine Recall@10
298
+ - type: cosine_ndcg@10
299
+ value: 0.3349468392248154
300
+ name: Cosine Ndcg@10
301
+ - type: cosine_mrr@10
302
+ value: 0.23376623376623376
303
+ name: Cosine Mrr@10
304
+ - type: cosine_map@100
305
+ value: 0.24652168791713625
306
+ name: Cosine Map@100
307
+ - task:
308
+ type: information-retrieval
309
+ name: Information Retrieval
310
+ dataset:
311
+ name: dim 512
312
+ type: dim_512
313
+ metrics:
314
+ - type: cosine_accuracy@1
315
+ value: 0.025974025974025976
316
+ name: Cosine Accuracy@1
317
+ - type: cosine_accuracy@3
318
+ value: 0.4935064935064935
319
+ name: Cosine Accuracy@3
320
+ - type: cosine_accuracy@5
321
+ value: 0.5844155844155844
322
+ name: Cosine Accuracy@5
323
+ - type: cosine_accuracy@10
324
+ value: 0.6493506493506493
325
+ name: Cosine Accuracy@10
326
+ - type: cosine_precision@1
327
+ value: 0.025974025974025976
328
+ name: Cosine Precision@1
329
+ - type: cosine_precision@3
330
+ value: 0.1645021645021645
331
+ name: Cosine Precision@3
332
+ - type: cosine_precision@5
333
+ value: 0.11688311688311684
334
+ name: Cosine Precision@5
335
+ - type: cosine_precision@10
336
+ value: 0.06493506493506492
337
+ name: Cosine Precision@10
338
+ - type: cosine_recall@1
339
+ value: 0.025974025974025976
340
+ name: Cosine Recall@1
341
+ - type: cosine_recall@3
342
+ value: 0.4935064935064935
343
+ name: Cosine Recall@3
344
+ - type: cosine_recall@5
345
+ value: 0.5844155844155844
346
+ name: Cosine Recall@5
347
+ - type: cosine_recall@10
348
+ value: 0.6493506493506493
349
+ name: Cosine Recall@10
350
+ - type: cosine_ndcg@10
351
+ value: 0.3381817622000061
352
+ name: Cosine Ndcg@10
353
+ - type: cosine_mrr@10
354
+ value: 0.23697691197691195
355
+ name: Cosine Mrr@10
356
+ - type: cosine_map@100
357
+ value: 0.2485755814005223
358
+ name: Cosine Map@100
359
+ - task:
360
+ type: information-retrieval
361
+ name: Information Retrieval
362
+ dataset:
363
+ name: dim 256
364
+ type: dim_256
365
+ metrics:
366
+ - type: cosine_accuracy@1
367
+ value: 0.05194805194805195
368
+ name: Cosine Accuracy@1
369
+ - type: cosine_accuracy@3
370
+ value: 0.4675324675324675
371
+ name: Cosine Accuracy@3
372
+ - type: cosine_accuracy@5
373
+ value: 0.5194805194805194
374
+ name: Cosine Accuracy@5
375
+ - type: cosine_accuracy@10
376
+ value: 0.6233766233766234
377
+ name: Cosine Accuracy@10
378
+ - type: cosine_precision@1
379
+ value: 0.05194805194805195
380
+ name: Cosine Precision@1
381
+ - type: cosine_precision@3
382
+ value: 0.15584415584415587
383
+ name: Cosine Precision@3
384
+ - type: cosine_precision@5
385
+ value: 0.1038961038961039
386
+ name: Cosine Precision@5
387
+ - type: cosine_precision@10
388
+ value: 0.062337662337662324
389
+ name: Cosine Precision@10
390
+ - type: cosine_recall@1
391
+ value: 0.05194805194805195
392
+ name: Cosine Recall@1
393
+ - type: cosine_recall@3
394
+ value: 0.4675324675324675
395
+ name: Cosine Recall@3
396
+ - type: cosine_recall@5
397
+ value: 0.5194805194805194
398
+ name: Cosine Recall@5
399
+ - type: cosine_recall@10
400
+ value: 0.6233766233766234
401
+ name: Cosine Recall@10
402
+ - type: cosine_ndcg@10
403
+ value: 0.3379715765084199
404
+ name: Cosine Ndcg@10
405
+ - type: cosine_mrr@10
406
+ value: 0.24577922077922074
407
+ name: Cosine Mrr@10
408
+ - type: cosine_map@100
409
+ value: 0.2597360814073472
410
+ name: Cosine Map@100
411
+ - task:
412
+ type: information-retrieval
413
+ name: Information Retrieval
414
+ dataset:
415
+ name: dim 128
416
+ type: dim_128
417
+ metrics:
418
+ - type: cosine_accuracy@1
419
+ value: 0.05194805194805195
420
+ name: Cosine Accuracy@1
421
+ - type: cosine_accuracy@3
422
+ value: 0.44155844155844154
423
+ name: Cosine Accuracy@3
424
+ - type: cosine_accuracy@5
425
+ value: 0.5584415584415584
426
+ name: Cosine Accuracy@5
427
+ - type: cosine_accuracy@10
428
+ value: 0.6623376623376623
429
+ name: Cosine Accuracy@10
430
+ - type: cosine_precision@1
431
+ value: 0.05194805194805195
432
+ name: Cosine Precision@1
433
+ - type: cosine_precision@3
434
+ value: 0.14718614718614723
435
+ name: Cosine Precision@3
436
+ - type: cosine_precision@5
437
+ value: 0.11168831168831166
438
+ name: Cosine Precision@5
439
+ - type: cosine_precision@10
440
+ value: 0.0662337662337662
441
+ name: Cosine Precision@10
442
+ - type: cosine_recall@1
443
+ value: 0.05194805194805195
444
+ name: Cosine Recall@1
445
+ - type: cosine_recall@3
446
+ value: 0.44155844155844154
447
+ name: Cosine Recall@3
448
+ - type: cosine_recall@5
449
+ value: 0.5584415584415584
450
+ name: Cosine Recall@5
451
+ - type: cosine_recall@10
452
+ value: 0.6623376623376623
453
+ name: Cosine Recall@10
454
+ - type: cosine_ndcg@10
455
+ value: 0.34288867015255386
456
+ name: Cosine Ndcg@10
457
+ - type: cosine_mrr@10
458
+ value: 0.24065656565656557
459
+ name: Cosine Mrr@10
460
+ - type: cosine_map@100
461
+ value: 0.2507978917088375
462
+ name: Cosine Map@100
463
+ - task:
464
+ type: information-retrieval
465
+ name: Information Retrieval
466
+ dataset:
467
+ name: dim 64
468
+ type: dim_64
469
+ metrics:
470
+ - type: cosine_accuracy@1
471
+ value: 0.06493506493506493
472
+ name: Cosine Accuracy@1
473
+ - type: cosine_accuracy@3
474
+ value: 0.4155844155844156
475
+ name: Cosine Accuracy@3
476
+ - type: cosine_accuracy@5
477
+ value: 0.5064935064935064
478
+ name: Cosine Accuracy@5
479
+ - type: cosine_accuracy@10
480
+ value: 0.5974025974025974
481
+ name: Cosine Accuracy@10
482
+ - type: cosine_precision@1
483
+ value: 0.06493506493506493
484
+ name: Cosine Precision@1
485
+ - type: cosine_precision@3
486
+ value: 0.13852813852813856
487
+ name: Cosine Precision@3
488
+ - type: cosine_precision@5
489
+ value: 0.1012987012987013
490
+ name: Cosine Precision@5
491
+ - type: cosine_precision@10
492
+ value: 0.05974025974025971
493
+ name: Cosine Precision@10
494
+ - type: cosine_recall@1
495
+ value: 0.06493506493506493
496
+ name: Cosine Recall@1
497
+ - type: cosine_recall@3
498
+ value: 0.4155844155844156
499
+ name: Cosine Recall@3
500
+ - type: cosine_recall@5
501
+ value: 0.5064935064935064
502
+ name: Cosine Recall@5
503
+ - type: cosine_recall@10
504
+ value: 0.5974025974025974
505
+ name: Cosine Recall@10
506
+ - type: cosine_ndcg@10
507
+ value: 0.32285221821950844
508
+ name: Cosine Ndcg@10
509
+ - type: cosine_mrr@10
510
+ value: 0.23481240981240978
511
+ name: Cosine Mrr@10
512
+ - type: cosine_map@100
513
+ value: 0.24816289395996594
514
+ name: Cosine Map@100
515
+ ---
516
+
517
+ # BGE base Financial Matryoshka
518
+
519
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/msmarco-distilbert-base-v4](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v4). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
520
+
521
+ ## Model Details
522
+
523
+ ### Model Description
524
+ - **Model Type:** Sentence Transformer
525
+ - **Base model:** [sentence-transformers/msmarco-distilbert-base-v4](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v4) <!-- at revision 19f0f4c73dc418bad0e0fc600611e808b7448a28 -->
526
+ - **Maximum Sequence Length:** 512 tokens
527
+ - **Output Dimensionality:** 768 dimensions
528
+ - **Similarity Function:** Cosine Similarity
529
+ <!-- - **Training Dataset:** Unknown -->
530
+ - **Language:** en
531
+ - **License:** apache-2.0
532
+
533
+ ### Model Sources
534
+
535
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
536
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
537
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
538
+
539
+ ### Full Model Architecture
540
+
541
+ ```
542
+ SentenceTransformer(
543
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
544
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
545
+ )
546
+ ```
547
+
548
+ ## Usage
549
+
550
+ ### Direct Usage (Sentence Transformers)
551
+
552
+ First install the Sentence Transformers library:
553
+
554
+ ```bash
555
+ pip install -U sentence-transformers
556
+ ```
557
+
558
+ Then you can load this model and run inference.
559
+ ```python
560
+ from sentence_transformers import SentenceTransformer
561
+
562
+ # Download from the 🤗 Hub
563
+ model = SentenceTransformer("Shashwat13333/msmarco-distilbert-base-v4")
564
+ # Run inference
565
+ sentences = [
566
+ "What steps do you take to understand a business's needs?",
567
+ 'How do you customize your DevOps solutions for different industries?\nWe understand that each industry has unique challenges and requirements. Our approach involves a thorough analysis of your business needs, industry standards, and regulatory requirements to tailor a DevOps solution that meets your specific objectives',
568
+ 'Our Vision Be a partner for industry verticals on the inevitable journey towards enterprise transformation and future readiness, by harnessing the growing power of Artificial Intelligence, Machine Learning, Data Science and emerging methodologies, with immediacy of impact and swiftness of outcome.Our Mission\nTo decode data, and code new intelligence into products and automation, engineer, develop and deploy systems and applications that redefine experiences and realign business growth.',
569
+ ]
570
+ embeddings = model.encode(sentences)
571
+ print(embeddings.shape)
572
+ # [3, 768]
573
+
574
+ # Get the similarity scores for the embeddings
575
+ similarities = model.similarity(embeddings, embeddings)
576
+ print(similarities.shape)
577
+ # [3, 3]
578
+ ```
579
+
580
+ <!--
581
+ ### Direct Usage (Transformers)
582
+
583
+ <details><summary>Click to see the direct usage in Transformers</summary>
584
+
585
+ </details>
586
+ -->
587
+
588
+ <!--
589
+ ### Downstream Usage (Sentence Transformers)
590
+
591
+ You can finetune this model on your own dataset.
592
+
593
+ <details><summary>Click to expand</summary>
594
+
595
+ </details>
596
+ -->
597
+
598
+ <!--
599
+ ### Out-of-Scope Use
600
+
601
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
602
+ -->
603
+
604
+ ## Evaluation
605
+
606
+ ### Metrics
607
+
608
+ #### Information Retrieval
609
+
610
+ * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
611
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
612
+
613
+ | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
614
+ |:--------------------|:-----------|:-----------|:----------|:-----------|:-----------|
615
+ | cosine_accuracy@1 | 0.039 | 0.026 | 0.0519 | 0.0519 | 0.0649 |
616
+ | cosine_accuracy@3 | 0.4805 | 0.4935 | 0.4675 | 0.4416 | 0.4156 |
617
+ | cosine_accuracy@5 | 0.5714 | 0.5844 | 0.5195 | 0.5584 | 0.5065 |
618
+ | cosine_accuracy@10 | 0.6494 | 0.6494 | 0.6234 | 0.6623 | 0.5974 |
619
+ | cosine_precision@1 | 0.039 | 0.026 | 0.0519 | 0.0519 | 0.0649 |
620
+ | cosine_precision@3 | 0.1602 | 0.1645 | 0.1558 | 0.1472 | 0.1385 |
621
+ | cosine_precision@5 | 0.1143 | 0.1169 | 0.1039 | 0.1117 | 0.1013 |
622
+ | cosine_precision@10 | 0.0649 | 0.0649 | 0.0623 | 0.0662 | 0.0597 |
623
+ | cosine_recall@1 | 0.039 | 0.026 | 0.0519 | 0.0519 | 0.0649 |
624
+ | cosine_recall@3 | 0.4805 | 0.4935 | 0.4675 | 0.4416 | 0.4156 |
625
+ | cosine_recall@5 | 0.5714 | 0.5844 | 0.5195 | 0.5584 | 0.5065 |
626
+ | cosine_recall@10 | 0.6494 | 0.6494 | 0.6234 | 0.6623 | 0.5974 |
627
+ | **cosine_ndcg@10** | **0.3349** | **0.3382** | **0.338** | **0.3429** | **0.3229** |
628
+ | cosine_mrr@10 | 0.2338 | 0.237 | 0.2458 | 0.2407 | 0.2348 |
629
+ | cosine_map@100 | 0.2465 | 0.2486 | 0.2597 | 0.2508 | 0.2482 |
630
+
631
+ <!--
632
+ ## Bias, Risks and Limitations
633
+
634
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
635
+ -->
636
+
637
+ <!--
638
+ ### Recommendations
639
+
640
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
641
+ -->
642
+
643
+ ## Training Details
644
+
645
+ ### Training Dataset
646
+
647
+ #### Unnamed Dataset
648
+
649
+
650
+ * Size: 154 training samples
651
+ * Columns: <code>anchor</code> and <code>positive</code>
652
+ * Approximate statistics based on the first 154 samples:
653
+ | | anchor | positive |
654
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
655
+ | type | string | string |
656
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.43 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 126.6 tokens</li><li>max: 378 tokens</li></ul> |
657
+ * Samples:
658
+ | anchor | positive |
659
+ |:---------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
660
+ | <code>What kind of websites can you help us with?</code> | <code>CLIENT TESTIMONIALS<br>Worked with TCZ on two business critical website development projects. The TCZ team is a group of experts in their respective domains and have helped us with excellent end-to-end development of a website right from the conceptualization to implementation and maintenance. By Dr. Kunal Joshi - Healthcare Marketing & Strategy Professional<br><br>TCZ helped us with our new website launch in a seamless manner. Through all our discussions, they made sure to have the website designed as we had envisioned it to be. Thank you team TCZ.<br>By Dr. Sarita Ahlawat - Managing Director and Co-Founder, Botlab Dynamics </code> |
661
+ | <code>What does DevSecOps mean?</code> | <code>How do you ensure the security of our DevOps pipeline?<br>Security is a top priority in our DevOps solutions. We implement DevSecOps practices, integrating security measures into the CI/CD pipeline from the outset. This includes automated security scans, compliance checks, and vulnerability assessments to ensure your infrastructure is secure</code> |
662
+ | <code>do you work with tech like nlp ?</code> | <code>What AI solutions does Techchefz specialize in?<br>We specialize in a range of AI solutions including recommendation engines, NLP, computer vision, customer segmentation, predictive analytics, operational efficiency through machine learning, risk management, and conversational AI for customer service.</code> |
663
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
664
+ ```json
665
+ {
666
+ "loss": "MultipleNegativesRankingLoss",
667
+ "matryoshka_dims": [
668
+ 768,
669
+ 512,
670
+ 256,
671
+ 128,
672
+ 64
673
+ ],
674
+ "matryoshka_weights": [
675
+ 1,
676
+ 1,
677
+ 1,
678
+ 1,
679
+ 1
680
+ ],
681
+ "n_dims_per_step": -1
682
+ }
683
+ ```
684
+
685
+ ### Training Hyperparameters
686
+ #### Non-Default Hyperparameters
687
+
688
+ - `eval_strategy`: epoch
689
+ - `gradient_accumulation_steps`: 4
690
+ - `learning_rate`: 1e-05
691
+ - `weight_decay`: 0.01
692
+ - `num_train_epochs`: 4
693
+ - `lr_scheduler_type`: cosine
694
+ - `warmup_ratio`: 0.1
695
+ - `fp16`: True
696
+ - `load_best_model_at_end`: True
697
+ - `optim`: adamw_torch_fused
698
+ - `push_to_hub`: True
699
+ - `hub_model_id`: Shashwat13333/msmarco-distilbert-base-v4_1
700
+ - `push_to_hub_model_id`: msmarco-distilbert-base-v4_1
701
+ - `batch_sampler`: no_duplicates
702
+
703
+ #### All Hyperparameters
704
+ <details><summary>Click to expand</summary>
705
+
706
+ - `overwrite_output_dir`: False
707
+ - `do_predict`: False
708
+ - `eval_strategy`: epoch
709
+ - `prediction_loss_only`: True
710
+ - `per_device_train_batch_size`: 8
711
+ - `per_device_eval_batch_size`: 8
712
+ - `per_gpu_train_batch_size`: None
713
+ - `per_gpu_eval_batch_size`: None
714
+ - `gradient_accumulation_steps`: 4
715
+ - `eval_accumulation_steps`: None
716
+ - `torch_empty_cache_steps`: None
717
+ - `learning_rate`: 1e-05
718
+ - `weight_decay`: 0.01
719
+ - `adam_beta1`: 0.9
720
+ - `adam_beta2`: 0.999
721
+ - `adam_epsilon`: 1e-08
722
+ - `max_grad_norm`: 1.0
723
+ - `num_train_epochs`: 4
724
+ - `max_steps`: -1
725
+ - `lr_scheduler_type`: cosine
726
+ - `lr_scheduler_kwargs`: {}
727
+ - `warmup_ratio`: 0.1
728
+ - `warmup_steps`: 0
729
+ - `log_level`: passive
730
+ - `log_level_replica`: warning
731
+ - `log_on_each_node`: True
732
+ - `logging_nan_inf_filter`: True
733
+ - `save_safetensors`: True
734
+ - `save_on_each_node`: False
735
+ - `save_only_model`: False
736
+ - `restore_callback_states_from_checkpoint`: False
737
+ - `no_cuda`: False
738
+ - `use_cpu`: False
739
+ - `use_mps_device`: False
740
+ - `seed`: 42
741
+ - `data_seed`: None
742
+ - `jit_mode_eval`: False
743
+ - `use_ipex`: False
744
+ - `bf16`: False
745
+ - `fp16`: True
746
+ - `fp16_opt_level`: O1
747
+ - `half_precision_backend`: auto
748
+ - `bf16_full_eval`: False
749
+ - `fp16_full_eval`: False
750
+ - `tf32`: None
751
+ - `local_rank`: 0
752
+ - `ddp_backend`: None
753
+ - `tpu_num_cores`: None
754
+ - `tpu_metrics_debug`: False
755
+ - `debug`: []
756
+ - `dataloader_drop_last`: False
757
+ - `dataloader_num_workers`: 0
758
+ - `dataloader_prefetch_factor`: None
759
+ - `past_index`: -1
760
+ - `disable_tqdm`: False
761
+ - `remove_unused_columns`: True
762
+ - `label_names`: None
763
+ - `load_best_model_at_end`: True
764
+ - `ignore_data_skip`: False
765
+ - `fsdp`: []
766
+ - `fsdp_min_num_params`: 0
767
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
768
+ - `fsdp_transformer_layer_cls_to_wrap`: None
769
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
770
+ - `deepspeed`: None
771
+ - `label_smoothing_factor`: 0.0
772
+ - `optim`: adamw_torch_fused
773
+ - `optim_args`: None
774
+ - `adafactor`: False
775
+ - `group_by_length`: False
776
+ - `length_column_name`: length
777
+ - `ddp_find_unused_parameters`: None
778
+ - `ddp_bucket_cap_mb`: None
779
+ - `ddp_broadcast_buffers`: False
780
+ - `dataloader_pin_memory`: True
781
+ - `dataloader_persistent_workers`: False
782
+ - `skip_memory_metrics`: True
783
+ - `use_legacy_prediction_loop`: False
784
+ - `push_to_hub`: True
785
+ - `resume_from_checkpoint`: None
786
+ - `hub_model_id`: Shashwat13333/msmarco-distilbert-base-v4_1
787
+ - `hub_strategy`: every_save
788
+ - `hub_private_repo`: None
789
+ - `hub_always_push`: False
790
+ - `gradient_checkpointing`: False
791
+ - `gradient_checkpointing_kwargs`: None
792
+ - `include_inputs_for_metrics`: False
793
+ - `include_for_metrics`: []
794
+ - `eval_do_concat_batches`: True
795
+ - `fp16_backend`: auto
796
+ - `push_to_hub_model_id`: msmarco-distilbert-base-v4_1
797
+ - `push_to_hub_organization`: None
798
+ - `mp_parameters`:
799
+ - `auto_find_batch_size`: False
800
+ - `full_determinism`: False
801
+ - `torchdynamo`: None
802
+ - `ray_scope`: last
803
+ - `ddp_timeout`: 1800
804
+ - `torch_compile`: False
805
+ - `torch_compile_backend`: None
806
+ - `torch_compile_mode`: None
807
+ - `dispatch_batches`: None
808
+ - `split_batches`: None
809
+ - `include_tokens_per_second`: False
810
+ - `include_num_input_tokens_seen`: False
811
+ - `neftune_noise_alpha`: None
812
+ - `optim_target_modules`: None
813
+ - `batch_eval_metrics`: False
814
+ - `eval_on_start`: False
815
+ - `use_liger_kernel`: False
816
+ - `eval_use_gather_object`: False
817
+ - `average_tokens_across_devices`: False
818
+ - `prompts`: None
819
+ - `batch_sampler`: no_duplicates
820
+ - `multi_dataset_batch_sampler`: proportional
821
+
822
+ </details>
823
+
824
+ ### Training Logs
825
+ | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
826
+ |:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
827
+ | 0.2 | 1 | 4.0076 | - | - | - | - | - |
828
+ | 1.0 | 5 | 4.8662 | 0.3288 | 0.3390 | 0.3208 | 0.3246 | 0.2749 |
829
+ | 2.0 | 10 | 4.1825 | 0.3288 | 0.3456 | 0.3306 | 0.3405 | 0.2954 |
830
+ | 3.0 | 15 | 3.048 | 0.3329 | 0.3313 | 0.3346 | 0.3392 | 0.3227 |
831
+ | **4.0** | **20** | **2.5029** | **0.3349** | **0.3382** | **0.338** | **0.3429** | **0.3229** |
832
+
833
+ * The bold row denotes the saved checkpoint.
834
+
835
+ ### Framework Versions
836
+ - Python: 3.11.11
837
+ - Sentence Transformers: 3.3.1
838
+ - Transformers: 4.47.1
839
+ - PyTorch: 2.5.1+cu124
840
+ - Accelerate: 1.2.1
841
+ - Datasets: 3.2.0
842
+ - Tokenizers: 0.21.0
843
+
844
+ ## Citation
845
+
846
+ ### BibTeX
847
+
848
+ #### Sentence Transformers
849
+ ```bibtex
850
+ @inproceedings{reimers-2019-sentence-bert,
851
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
852
+ author = "Reimers, Nils and Gurevych, Iryna",
853
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
854
+ month = "11",
855
+ year = "2019",
856
+ publisher = "Association for Computational Linguistics",
857
+ url = "https://arxiv.org/abs/1908.10084",
858
+ }
859
+ ```
860
+
861
+ #### MatryoshkaLoss
862
+ ```bibtex
863
+ @misc{kusupati2024matryoshka,
864
+ title={Matryoshka Representation Learning},
865
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
866
+ year={2024},
867
+ eprint={2205.13147},
868
+ archivePrefix={arXiv},
869
+ primaryClass={cs.LG}
870
+ }
871
+ ```
872
+
873
+ #### MultipleNegativesRankingLoss
874
+ ```bibtex
875
+ @misc{henderson2017efficient,
876
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
877
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
878
+ year={2017},
879
+ eprint={1705.00652},
880
+ archivePrefix={arXiv},
881
+ primaryClass={cs.CL}
882
+ }
883
+ ```
884
+
885
+ <!--
886
+ ## Glossary
887
+
888
+ *Clearly define terms in order to be accessible across audiences.*
889
+ -->
890
+
891
+ <!--
892
+ ## Model Card Authors
893
+
894
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
895
+ -->
896
+
897
+ <!--
898
+ ## Model Card Contact
899
+
900
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
901
+ -->
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }