BERT
Collection
5 items
•
Updated
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 0.25 | 85 | 0.0511 | 0.9819 | 0.9821 | 0.9804 | 0.9813 |
No log | 0.5 | 170 | 0.0752 | 0.9836 | 0.9982 | 0.9679 | 0.9828 |
No log | 0.75 | 255 | 0.0550 | 0.9888 | 0.9841 | 0.9929 | 0.9885 |
0.1064 | 1.0 | 340 | 0.0383 | 0.9923 | 0.9964 | 0.9875 | 0.9919 |
0.1064 | 1.25 | 425 | 0.0485 | 0.9923 | 0.9982 | 0.9857 | 0.9919 |
0.1064 | 1.5 | 510 | 0.0468 | 0.9914 | 0.9964 | 0.9857 | 0.9910 |
0.1064 | 1.76 | 595 | 0.0477 | 0.9914 | 1.0 | 0.9822 | 0.9910 |
0.0322 | 2.01 | 680 | 0.0506 | 0.9931 | 1.0 | 0.9857 | 0.9928 |
0.0322 | 2.26 | 765 | 0.0455 | 0.9914 | 0.9928 | 0.9893 | 0.9911 |
0.0322 | 2.51 | 850 | 0.0466 | 0.9914 | 0.9946 | 0.9875 | 0.9911 |
0.0322 | 2.76 | 935 | 0.0491 | 0.9931 | 1.0 | 0.9857 | 0.9928 |
0.0217 | 3.01 | 1020 | 0.0517 | 0.9923 | 0.9964 | 0.9875 | 0.9919 |
0.0217 | 3.26 | 1105 | 0.0455 | 0.9931 | 1.0 | 0.9857 | 0.9928 |
0.0217 | 3.51 | 1190 | 0.0338 | 0.9931 | 0.9982 | 0.9875 | 0.9928 |
0.0217 | 3.76 | 1275 | 0.0385 | 0.9940 | 1.0 | 0.9875 | 0.9937 |
0.024 | 4.01 | 1360 | 0.0376 | 0.9931 | 1.0 | 0.9857 | 0.9928 |
0.024 | 4.26 | 1445 | 0.0332 | 0.9931 | 0.9982 | 0.9875 | 0.9928 |
0.024 | 4.51 | 1530 | 0.0343 | 0.9923 | 0.9946 | 0.9893 | 0.9920 |
0.024 | 4.76 | 1615 | 0.0335 | 0.9931 | 0.9982 | 0.9875 | 0.9928 |
Base model
google-bert/bert-base-uncased