metadata
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- autotrain
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: 'search_query: i love autotrain'
sentences:
- 'search_query: huggingface auto train'
- 'search_query: hugging face auto train'
- 'search_query: i love autotrain'
pipeline_tag: sentence-similarity
Model Trained Using AutoTrain
- Problem type: Sentence Transformers
Validation Metrics
loss: 6.586054801940918
validation_pearson_cosine: 0.15590647163663807
validation_spearman_cosine: 0.28867513459481287
validation_pearson_manhattan: 0.20874094632850035
validation_spearman_manhattan: 0.28867513459481287
validation_pearson_euclidean: 0.21989747670451043
validation_spearman_euclidean: 0.28867513459481287
validation_pearson_dot: 0.15590640231031966
validation_spearman_dot: 0.28867513459481287
validation_pearson_max: 0.21989747670451043
validation_spearman_max: 0.28867513459481287
runtime: 0.1469
samples_per_second: 34.037
steps_per_second: 6.807
: 3.0
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the Hugging Face Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'search_query: autotrain',
'search_query: auto train',
'search_query: i love autotrain',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)