Model Trained Using AutoTrain
- Problem type: Sentence Transformers
Validation Metrics
loss: 9.164422988891602
validation_pearson_cosine: -0.10073561135203735
validation_spearman_cosine: -0.05129891760425771
validation_pearson_manhattan: -0.07223520049199797
validation_spearman_manhattan: -0.05129891760425771
validation_pearson_euclidean: -0.056592337170460805
validation_spearman_euclidean: -0.05129891760425771
validation_pearson_dot: -0.1007351930231386
validation_spearman_dot: -0.05129891760425771
validation_pearson_max: -0.056592337170460805
validation_spearman_max: -0.05129891760425771
runtime: 0.1267
samples_per_second: 39.454
steps_per_second: 7.891
: 3.0
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the Hugging Face Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'search_query: autotrain',
'search_query: auto train',
'search_query: i love autotrain',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ShauryaNova/autotrain-tuac9-vfsuc
Base model
sentence-transformers/all-MiniLM-L6-v2