ShkalikovOleh's picture
Update README.md
75ef655 verified
|
raw
history blame
1.66 kB
metadata
base_model:
  - FacebookAI/xlm-roberta-large
datasets:
  - google/xtreme
language:
  - en
library_name: transformers
license: mit
metrics:
  - f1
  - accuracy
  - precision
  - recall
pipeline_tag: token-classification
model-index:
  - name: xlm-roberta-large-panx-en
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: google/xtreme
          type: google/xtreme
          config: PAN-X.en
          split: validation
        metrics:
          - type: precision
            value: 0.834659287443791
            name: Precision
          - type: recall
            value: 0.852891276685989
            name: Recall
          - type: f1
            value: 0.8436767945176742
            name: F1
          - type: accuracy
            value: 0.9357306049468561
            name: Accuracy

XLM-RoBERTa-Large-PANX-WikiAnn-en

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the google/xtreme dataset (English split of the PAN-X). It achieves the following results on the evaluation set:

  • Loss: 0.2569
  • Precision: 0.8347
  • Recall: 0.8529
  • F1: 0.8437
  • Accuracy: 0.9357

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1