metadata
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: my-new-model-id
results: []
my-new-model-id
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:
- Loss: 0.6585
- Answer: {'precision': 0.7224043715846995, 'recall': 0.8170580964153276, 'f1': 0.7668213457076567, 'number': 809}
- Header: {'precision': 0.2777777777777778, 'recall': 0.33613445378151263, 'f1': 0.30418250950570347, 'number': 119}
- Question: {'precision': 0.7818343722172751, 'recall': 0.8244131455399061, 'f1': 0.8025594149908593, 'number': 1065}
- Overall Precision: 0.7236
- Overall Recall: 0.7923
- Overall F1: 0.7564
- Overall Accuracy: 0.8164
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
1.8057 | 1.0 | 10 | 1.5463 | {'precision': 0.016229712858926344, 'recall': 0.016069221260815822, 'f1': 0.01614906832298137, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.16498993963782696, 'recall': 0.07699530516431925, 'f1': 0.10499359795134443, 'number': 1065} | 0.0732 | 0.0477 | 0.0577 | 0.3858 |
1.4605 | 2.0 | 20 | 1.2487 | {'precision': 0.24860335195530725, 'recall': 0.3300370828182942, 'f1': 0.2835900159320234, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.45215485756026297, 'recall': 0.5812206572769953, 'f1': 0.5086277732128184, 'number': 1065} | 0.3627 | 0.4446 | 0.3995 | 0.5992 |
1.1219 | 3.0 | 30 | 0.9461 | {'precision': 0.45073375262054505, 'recall': 0.5315203955500618, 'f1': 0.4878048780487805, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5785597381342062, 'recall': 0.6638497652582159, 'f1': 0.6182772190642762, 'number': 1065} | 0.5204 | 0.5705 | 0.5443 | 0.6840 |
0.847 | 4.0 | 40 | 0.7978 | {'precision': 0.5685131195335277, 'recall': 0.723114956736712, 'f1': 0.6365614798694234, 'number': 809} | {'precision': 0.07142857142857142, 'recall': 0.025210084033613446, 'f1': 0.037267080745341616, 'number': 119} | {'precision': 0.6571180555555556, 'recall': 0.7107981220657277, 'f1': 0.6829048263419035, 'number': 1065} | 0.6050 | 0.6749 | 0.6380 | 0.7407 |
0.6811 | 5.0 | 50 | 0.7134 | {'precision': 0.6322444678609063, 'recall': 0.7416563658838071, 'f1': 0.6825938566552902, 'number': 809} | {'precision': 0.2328767123287671, 'recall': 0.14285714285714285, 'f1': 0.17708333333333334, 'number': 119} | {'precision': 0.7031924072476272, 'recall': 0.7652582159624414, 'f1': 0.7329136690647481, 'number': 1065} | 0.6566 | 0.7185 | 0.6862 | 0.7763 |
0.5706 | 6.0 | 60 | 0.6581 | {'precision': 0.663820704375667, 'recall': 0.7688504326328801, 'f1': 0.7124856815578464, 'number': 809} | {'precision': 0.23376623376623376, 'recall': 0.15126050420168066, 'f1': 0.1836734693877551, 'number': 119} | {'precision': 0.7145187601957586, 'recall': 0.8225352112676056, 'f1': 0.7647315582714972, 'number': 1065} | 0.6768 | 0.7607 | 0.7163 | 0.7990 |
0.5016 | 7.0 | 70 | 0.6413 | {'precision': 0.6694386694386695, 'recall': 0.796044499381953, 'f1': 0.7272727272727273, 'number': 809} | {'precision': 0.19626168224299065, 'recall': 0.17647058823529413, 'f1': 0.18584070796460178, 'number': 119} | {'precision': 0.7557446808510638, 'recall': 0.8338028169014085, 'f1': 0.7928571428571429, 'number': 1065} | 0.6921 | 0.7792 | 0.7331 | 0.8033 |
0.4435 | 8.0 | 80 | 0.6286 | {'precision': 0.6945031712473573, 'recall': 0.8121137206427689, 'f1': 0.7487179487179487, 'number': 809} | {'precision': 0.23931623931623933, 'recall': 0.23529411764705882, 'f1': 0.23728813559322035, 'number': 119} | {'precision': 0.7668122270742358, 'recall': 0.8244131455399061, 'f1': 0.7945701357466064, 'number': 1065} | 0.7079 | 0.7842 | 0.7441 | 0.8108 |
0.4078 | 9.0 | 90 | 0.6405 | {'precision': 0.6957470010905126, 'recall': 0.788627935723115, 'f1': 0.7392815758980301, 'number': 809} | {'precision': 0.2711864406779661, 'recall': 0.2689075630252101, 'f1': 0.270042194092827, 'number': 119} | {'precision': 0.7794508414526129, 'recall': 0.8262910798122066, 'f1': 0.8021877848678213, 'number': 1065} | 0.7163 | 0.7777 | 0.7457 | 0.8137 |
0.3657 | 10.0 | 100 | 0.6364 | {'precision': 0.7142857142857143, 'recall': 0.8096415327564895, 'f1': 0.7589803012746235, 'number': 809} | {'precision': 0.2807017543859649, 'recall': 0.2689075630252101, 'f1': 0.27467811158798283, 'number': 119} | {'precision': 0.7870452528837621, 'recall': 0.8328638497652582, 'f1': 0.8093065693430658, 'number': 1065} | 0.7294 | 0.7898 | 0.7584 | 0.8098 |
0.335 | 11.0 | 110 | 0.6427 | {'precision': 0.7027896995708155, 'recall': 0.8096415327564895, 'f1': 0.7524411257897761, 'number': 809} | {'precision': 0.26865671641791045, 'recall': 0.3025210084033613, 'f1': 0.2845849802371542, 'number': 119} | {'precision': 0.7813620071684588, 'recall': 0.8187793427230047, 'f1': 0.7996331957817515, 'number': 1065} | 0.7163 | 0.7842 | 0.7487 | 0.8132 |
0.3103 | 12.0 | 120 | 0.6505 | {'precision': 0.7311946902654868, 'recall': 0.8170580964153276, 'f1': 0.7717454757734967, 'number': 809} | {'precision': 0.2595419847328244, 'recall': 0.2857142857142857, 'f1': 0.27199999999999996, 'number': 119} | {'precision': 0.7859054415700267, 'recall': 0.8272300469483568, 'f1': 0.8060384263494967, 'number': 1065} | 0.7310 | 0.7908 | 0.7597 | 0.8160 |
0.3007 | 13.0 | 130 | 0.6494 | {'precision': 0.7219193020719739, 'recall': 0.8182941903584673, 'f1': 0.7670915411355737, 'number': 809} | {'precision': 0.27692307692307694, 'recall': 0.3025210084033613, 'f1': 0.2891566265060241, 'number': 119} | {'precision': 0.7930419268510259, 'recall': 0.8347417840375587, 'f1': 0.8133577310155535, 'number': 1065} | 0.7320 | 0.7963 | 0.7628 | 0.8161 |
0.2831 | 14.0 | 140 | 0.6593 | {'precision': 0.7202185792349727, 'recall': 0.8145859085290482, 'f1': 0.7645011600928074, 'number': 809} | {'precision': 0.273972602739726, 'recall': 0.33613445378151263, 'f1': 0.3018867924528302, 'number': 119} | {'precision': 0.7793468667255075, 'recall': 0.8291079812206573, 'f1': 0.8034576888080072, 'number': 1065} | 0.7211 | 0.7938 | 0.7557 | 0.8144 |
0.2913 | 15.0 | 150 | 0.6585 | {'precision': 0.7224043715846995, 'recall': 0.8170580964153276, 'f1': 0.7668213457076567, 'number': 809} | {'precision': 0.2777777777777778, 'recall': 0.33613445378151263, 'f1': 0.30418250950570347, 'number': 119} | {'precision': 0.7818343722172751, 'recall': 0.8244131455399061, 'f1': 0.8025594149908593, 'number': 1065} | 0.7236 | 0.7923 | 0.7564 | 0.8164 |
Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.0+cpu
- Datasets 2.1.0
- Tokenizers 0.13.3