|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: beit-base-patch16-224-pt22k-ft22k-rim_one-new |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8767123287671232 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# beit-base-patch16-224-pt22k-ft22k-rim_one-new |
|
|
|
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4550 |
|
- Accuracy: 0.8767 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 0.73 | 2 | 0.2411 | 0.9178 | |
|
| No log | 1.73 | 4 | 0.2182 | 0.8973 | |
|
| No log | 2.73 | 6 | 0.3085 | 0.8973 | |
|
| No log | 3.73 | 8 | 0.2794 | 0.8973 | |
|
| 0.1392 | 4.73 | 10 | 0.2398 | 0.9110 | |
|
| 0.1392 | 5.73 | 12 | 0.2925 | 0.8973 | |
|
| 0.1392 | 6.73 | 14 | 0.2798 | 0.9110 | |
|
| 0.1392 | 7.73 | 16 | 0.2184 | 0.9178 | |
|
| 0.1392 | 8.73 | 18 | 0.3007 | 0.9110 | |
|
| 0.0416 | 9.73 | 20 | 0.3344 | 0.9041 | |
|
| 0.0416 | 10.73 | 22 | 0.3626 | 0.9110 | |
|
| 0.0416 | 11.73 | 24 | 0.4842 | 0.8904 | |
|
| 0.0416 | 12.73 | 26 | 0.3664 | 0.8973 | |
|
| 0.0416 | 13.73 | 28 | 0.3458 | 0.9110 | |
|
| 0.0263 | 14.73 | 30 | 0.2810 | 0.9110 | |
|
| 0.0263 | 15.73 | 32 | 0.4695 | 0.8699 | |
|
| 0.0263 | 16.73 | 34 | 0.3723 | 0.9041 | |
|
| 0.0263 | 17.73 | 36 | 0.3447 | 0.9041 | |
|
| 0.0263 | 18.73 | 38 | 0.3708 | 0.8904 | |
|
| 0.0264 | 19.73 | 40 | 0.4052 | 0.9110 | |
|
| 0.0264 | 20.73 | 42 | 0.4492 | 0.9041 | |
|
| 0.0264 | 21.73 | 44 | 0.4649 | 0.8904 | |
|
| 0.0264 | 22.73 | 46 | 0.4061 | 0.9178 | |
|
| 0.0264 | 23.73 | 48 | 0.4136 | 0.9110 | |
|
| 0.0139 | 24.73 | 50 | 0.4183 | 0.8973 | |
|
| 0.0139 | 25.73 | 52 | 0.4504 | 0.8904 | |
|
| 0.0139 | 26.73 | 54 | 0.4368 | 0.8973 | |
|
| 0.0139 | 27.73 | 56 | 0.4711 | 0.9110 | |
|
| 0.0139 | 28.73 | 58 | 0.3928 | 0.9110 | |
|
| 0.005 | 29.73 | 60 | 0.4550 | 0.8767 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|