Edit model card

imdb_roberta_large

This model is a fine-tuned version of roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1728
  • Accuracy: 0.9627

Model description

Train and Test Code

from datasets import load_dataset
imdb = load_dataset("imdb")

import numpy as np
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer
import torch
from transformers import AutoTokenizer
from transformers import DataCollatorWithPadding
from transformers import EarlyStoppingCallback
import evaluate


# model_name = 'xlnet-large-cased'
model_name = 'roberta-large'

id2label = {0: "NEGATIVE", 1: "POSITIVE"}
label2id = {"NEGATIVE": 0, "POSITIVE": 1}
def compute_metrics(eval_pred):
    predictions, labels = eval_pred
    predictions = np.argmax(predictions, axis=1)
    return accuracy.compute(predictions=predictions, references=labels)


tokenizer = AutoTokenizer.from_pretrained(model_name)
def preprocess_function(examples):
    return tokenizer(examples["text"], truncation=True)
tokenized_imdb = imdb.map(preprocess_function, batched=True)

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
accuracy = evaluate.load("accuracy")

model = AutoModelForSequenceClassification.from_pretrained(
    model_name, num_labels=2, id2label=id2label, label2id=label2id
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)


bts = 8
accumulated_step = 2
training_args = TrainingArguments(
    output_dir=f"5imdb_{model_name.replace('-','_')}",
    learning_rate=2e-5,
    per_device_train_batch_size=bts,
    per_device_eval_batch_size=bts,
    num_train_epochs=2,
    weight_decay=0.01,
    evaluation_strategy="epoch",
    save_strategy="epoch",
    load_best_model_at_end=True,
    push_to_hub=True,
   gradient_accumulation_steps=accumulated_step,
)
# 创建 EarlyStoppingCallback 回调
early_stopping = EarlyStoppingCallback(early_stopping_patience=3)
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_imdb["train"],
    eval_dataset=tokenized_imdb["test"],
    tokenizer=tokenizer,
    data_collator=data_collator,
    compute_metrics=compute_metrics,
    callbacks=[early_stopping],
)

trainer.train()

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1732 1.0 1562 0.1323 0.9574
0.0978 2.0 3124 0.1728 0.9627

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Siki-77/imdb_roberta_large

Finetuned
(283)
this model