Create focus.py
Browse files
focus.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class Adaptivefocus(nn.Module):
|
2 |
+
def __init__(self, base, dims, head, max_dist, sharpen, win_size, max_span, temp_scale=0.01, num_iterations=3):
|
3 |
+
super().__init__()
|
4 |
+
self.max_dist = max_dist
|
5 |
+
self.win_size = win_size
|
6 |
+
self.max_span = max_span
|
7 |
+
self.temp_scale = temp_scale
|
8 |
+
self.multihead_attn = MultiheadAttention(base=base, dims=dims, head=head, max_dist=max_dist)
|
9 |
+
self.span_scale = nn.Parameter(torch.tensor(1.0))
|
10 |
+
self.sharpen = sharpen
|
11 |
+
self.num_iterations = num_iterations
|
12 |
+
self.base_threshold = 1e-4
|
13 |
+
self.scaling_factor = 0.1
|
14 |
+
|
15 |
+
def _focus(self, query, key, value, span_scale):
|
16 |
+
max_iterations = self.num_iterations
|
17 |
+
iteration = 0
|
18 |
+
prev_attn_out = torch.zeros_like(query)
|
19 |
+
|
20 |
+
while iteration < max_iterations:
|
21 |
+
span_len = int(self.max_span * span_scale.mean().item())
|
22 |
+
span_len = min(span_len, query.shape[1], key.shape[1], value.shape[1])
|
23 |
+
eff_span = min(span_len, self.max_dist)
|
24 |
+
|
25 |
+
if eff_span == 0:
|
26 |
+
break
|
27 |
+
|
28 |
+
q_span = query[:, :eff_span, :]
|
29 |
+
k_span = key[:, :eff_span, :]
|
30 |
+
v_span = value[:, :eff_span, :]
|
31 |
+
|
32 |
+
batch_size, seq_len, dims = q_span.size()
|
33 |
+
scale = (dims // self.multihead_attn.head) ** -0.25
|
34 |
+
|
35 |
+
q = q_span.view(q_span.shape[0], q_span.shape[1], self.multihead_attn.head, -1).permute(0, 2, 1, 3)
|
36 |
+
k = k_span.view(k_span.shape[0], k_span.shape[1], self.multihead_attn.head, -1).permute(0, 2, 1, 3)
|
37 |
+
v = v_span.view(v_span.shape[0], v_span.shape[1], self.multihead_attn.head, -1).permute(0, 2, 1, 3)
|
38 |
+
|
39 |
+
if self.sharpen:
|
40 |
+
temperature = 1.0 + self.temp_scale * (1.0 - span_scale.mean().item())
|
41 |
+
else:
|
42 |
+
temperature = 0.5 + self.temp_scale * span_scale.mean().item()
|
43 |
+
|
44 |
+
attn_scores = torch.matmul(q, k.transpose(-2, -1))
|
45 |
+
attn_weights = torch.softmax((attn_scores / temperature) * scale, dim=-1)
|
46 |
+
attn_out = torch.matmul(attn_weights, v)
|
47 |
+
attn_out = attn_out.permute(0, 2, 1, 3).flatten(start_dim=2)
|
48 |
+
attn_out = attn_out.contiguous().view(batch_size, eff_span, dims)
|
49 |
+
|
50 |
+
diff = torch.abs(attn_out - prev_attn_out).mean()
|
51 |
+
|
52 |
+
dynamic_threshold = self.base_threshold + self.scaling_factor * diff
|
53 |
+
|
54 |
+
if diff < dynamic_threshold:
|
55 |
+
break
|
56 |
+
|
57 |
+
prev_attn_out = attn_out
|
58 |
+
query = query + attn_out
|
59 |
+
iteration += 1
|
60 |
+
|
61 |
+
return attn_out, attn_weights
|
62 |
+
|
63 |
+
def forward(self, query, key, value, span_scale):
|
64 |
+
return self._focus(query, key, value, span_scale)
|
65 |
+
|
66 |
+
|
67 |
+
class SpanPredictor(nn.Module):
|
68 |
+
def __init__(self, dims):
|
69 |
+
super().__init__()
|
70 |
+
self.linear = nn.Linear(in_features=dims, out_features=1)
|
71 |
+
|
72 |
+
def forward(self, global_out):
|
73 |
+
scale = torch.sigmoid(self.linear(global_out))
|
74 |
+
return scale
|
75 |
+
|
76 |
+
class FocusedAttention(nn.Module):
|
77 |
+
def __init__(self, base, dims, head, max_dist, sharpen, win_size=32, max_span=32, slid_win=32, temp_scale=0.01, num_iterations=3):
|
78 |
+
super().__init__()
|
79 |
+
self.max_dist = max_dist
|
80 |
+
self.win_size = win_size
|
81 |
+
self.max_span = max_span
|
82 |
+
self.slid_win = slid_win
|
83 |
+
|
84 |
+
self.span_pred = SpanPredictor(dims=dims)
|
85 |
+
self.dist_local = max_dist
|
86 |
+
self.dist_global = max_dist
|
87 |
+
|
88 |
+
self.attn_local = Adaptivefocus(base=base, dims=dims, head=head, max_dist=max_dist, sharpen=sharpen, win_size=win_size, max_span=max_span, temp_scale=temp_scale, num_iterations=num_iterations)
|
89 |
+
self.attn_global = MultiheadAttention(base=base, dims=dims, head=head, max_dist=self.dist_global)
|
90 |
+
self.ln_local = LayerNorm(normalized_shape=dims)
|
91 |
+
self.ln_global = LayerNorm(normalized_shape=dims)
|
92 |
+
self.projection = Linear(in_features=2 * dims, out_features=dims)
|
93 |
+
|
94 |
+
def forward(self, x, new_dist=None, new_base=None, xa=None, mask=None, kv_cache=None):
|
95 |
+
local = self.ln_local(x)
|
96 |
+
globe = self.ln_global(x)
|
97 |
+
|
98 |
+
globe_out, _ = self.attn_global(globe, globe, globe)
|
99 |
+
|
100 |
+
span_scale = self.span_pred(globe_out.mean(dim=1))
|
101 |
+
|
102 |
+
win_size = max(1, int(self.slid_win * span_scale.mean().item()))
|
103 |
+
span_len = max(1, int(self.max_span * span_scale.mean().item()))
|
104 |
+
|
105 |
+
effective_max_dist = min(self.max_dist, local.size(1))
|
106 |
+
local_max_dist = min(self.dist_local, span_len, win_size)
|
107 |
+
globe_max_dist = effective_max_dist
|
108 |
+
|
109 |
+
self.attn_local.max_dist = local_max_dist
|
110 |
+
self.attn_global.max_dist = globe_max_dist
|
111 |
+
|
112 |
+
local_out = self.slide_win(x=local, win_size=win_size, span_len=span_len, span_scale=span_scale)
|
113 |
+
|
114 |
+
combined = torch.cat(tensors=[local_out, globe_out], dim=-1)
|
115 |
+
x = self.projection(combined)
|
116 |
+
|
117 |
+
return x
|
118 |
+
|
119 |
+
def slide_win(self, x, win_size, span_len, span_scale):
|
120 |
+
batch_size, seq_len, dims = x.size()
|
121 |
+
out = torch.zeros_like(x, device=x.device)
|
122 |
+
|
123 |
+
for i in range(0, seq_len, win_size):
|
124 |
+
end = min(i + win_size, seq_len)
|
125 |
+
query = x[:, i:end, :]
|
126 |
+
|
127 |
+
start = max(0, i - span_len + win_size)
|
128 |
+
key = x[:, start:i + span_len, :]
|
129 |
+
value = x[:, start:i + span_len, :]
|
130 |
+
attn_out, _ = self.attn_local(query, key, value, span_scale)
|
131 |
+
out[:, i:end, :] = attn_out
|
132 |
+
|
133 |
+
return out
|
134 |
+
|
135 |
+
## different version
|
136 |
+
# class FocusedAttention(nn.Module):
|
137 |
+
# def __init__(self, base, dims, head, max_dist, sharpen, win_size=32, max_span=32, slid_win=32, temp_scale=0.01):
|
138 |
+
# super().__init__()
|
139 |
+
# self.base = base
|
140 |
+
# self.dims = dims
|
141 |
+
# self.head = head
|
142 |
+
# self.max_dist = max_dist
|
143 |
+
# self.sharpen = sharpen
|
144 |
+
# self.win_size = win_size
|
145 |
+
# self.max_span = max_span
|
146 |
+
# self.slid_win = slid_win
|
147 |
+
# self.temp_scale = temp_scale
|
148 |
+
|
149 |
+
# self.span_scale_param = nn.Parameter(torch.tensor(1.0))
|
150 |
+
# self.span_predictor = nn.Linear(in_features=dims, out_features=1)
|
151 |
+
|
152 |
+
# self.multihead_attn_local = MultiheadAttention(base=base, dims=dims, head=head, max_dist=max_dist)
|
153 |
+
# self.multihead_attn_global = MultiheadAttention(base=base, dims=dims, head=head, max_dist=max_dist)
|
154 |
+
|
155 |
+
# self.ln_local = LayerNorm(normalized_shape=dims)
|
156 |
+
# self.ln_global = LayerNorm(normalized_shape=dims)
|
157 |
+
# self.projection = Linear(in_features=2 * dims, out_features=dims)
|
158 |
+
|
159 |
+
# def forward(self, x):
|
160 |
+
|
161 |
+
# local = self.ln_local(x)
|
162 |
+
# global_ = self.ln_global(x)
|
163 |
+
|
164 |
+
# globe_out, _ = self.multihead_attn_global(global_, global_, global_)
|
165 |
+
|
166 |
+
# span_scale = torch.sigmoid(self.span_predictor(globe_out.mean(dim=1)))
|
167 |
+
|
168 |
+
# win_size = max(1, int(self.slid_win * span_scale.mean().item()))
|
169 |
+
# span_len = max(1, int(self.max_span * span_scale.mean().item()))
|
170 |
+
|
171 |
+
# effective_max_dist = min(self.max_dist, local.size(1))
|
172 |
+
# local_max_dist = min(self.max_dist, span_len, win_size)
|
173 |
+
# globe_max_dist = effective_max_dist
|
174 |
+
|
175 |
+
# self.multihead_attn_local.max_dist = local_max_dist
|
176 |
+
# self.multihead_attn_global.max_dist = globe_max_dist
|
177 |
+
|
178 |
+
# local_out = self._window(local, win_size, span_len, span_scale)
|
179 |
+
|
180 |
+
# combined = torch.cat([local_out, globe_out], dim=-1)
|
181 |
+
# x = self.projection(combined)
|
182 |
+
|
183 |
+
# return x
|
184 |
+
|
185 |
+
# def _window(self, x, win_size, span_len, span_scale):
|
186 |
+
# batch_size, seq_len, dims = x.size()
|
187 |
+
# output = torch.zeros_like(x, device=x.device)
|
188 |
+
|
189 |
+
# for i in range(0, seq_len, win_size):
|
190 |
+
# end = min(i + win_size, seq_len)
|
191 |
+
# query = x[:, i:end, :]
|
192 |
+
|
193 |
+
# start = max(0, i - span_len + win_size)
|
194 |
+
# key = x[:, start:i + span_len, :]
|
195 |
+
# value = x[:, start:i + span_len, :]
|
196 |
+
|
197 |
+
# attn_out, _ = self._focus(query, key, value, span_scale)
|
198 |
+
# output[:, i:end, :] = attn_out
|
199 |
+
|
200 |
+
# return output
|
201 |
+
|
202 |
+
# def _focus(self, query, key, value, span_scale):
|
203 |
+
# span_len = int(self.max_span * span_scale.mean().item())
|
204 |
+
# span_len = min(span_len, query.size(1), key.size(1), value.size(1))
|
205 |
+
# eff_span = min(span_len, self.max_dist)
|
206 |
+
|
207 |
+
# q_span = query[:, :eff_span, :]
|
208 |
+
# k_span = key[:, :eff_span, :]
|
209 |
+
# v_span = value[:, :eff_span, :]
|
210 |
+
|
211 |
+
# batch_size, seq_len, dims = q_span.size()
|
212 |
+
# scale_factor = (dims // self.head) ** -0.25
|
213 |
+
|
214 |
+
# q = q_span.view(batch_size, seq_len, self.head, -1).permute(0, 2, 1, 3)
|
215 |
+
# k = k_span.view(batch_size, seq_len, self.head, -1).permute(0, 2, 1, 3)
|
216 |
+
# v = v_span.view(batch_size, seq_len, self.head, -1).permute(0, 2, 1, 3)
|
217 |
+
|
218 |
+
# if self.sharpen:
|
219 |
+
# temperature = 1.0 + self.temp_scale * (1.0 - span_scale.mean().item())
|
220 |
+
# else:
|
221 |
+
# temperature = 0.5 + self.temp_scale * span_scale.mean().item()
|
222 |
+
|
223 |
+
# attn_scores = torch.matmul(q, k.transpose(-2, -1))
|
224 |
+
# attn_weights = torch.softmax((attn_scores / temperature) * scale_factor, dim=-1)
|
225 |
+
# attn_out = torch.matmul(attn_weights, v)
|
226 |
+
|
227 |
+
# attn_out = attn_out.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_len, -1)
|
228 |
+
|
229 |
+
# return attn_out, attn_weights
|
230 |
+
|
231 |
+
|
232 |
+
# #Batch:
|
233 |
+
|
234 |
+
# def _window(self, x, win_size, span_len, span_scale):
|
235 |
+
# batch_size, seq_len, dims = x.size()
|
236 |
+
# num_windows = (seq_len + win_size - 1) // win_size # Calculate the number of windows
|
237 |
+
|
238 |
+
# # Create tensors to store the outputs
|
239 |
+
# output = torch.zeros_like(x, device=x.device)
|
240 |
+
|
241 |
+
# # Iterate over the windows in a more efficient manner
|
242 |
+
# for i in range(num_windows):
|
243 |
+
# start_idx = i * win_size
|
244 |
+
# end_idx = min((i + 1) * win_size, seq_len)
|
245 |
+
# query = x[:, start_idx:end_idx, :]
|
246 |
+
|
247 |
+
# # Define the range of keys and values
|
248 |
+
# key_start = max(0, start_idx - span_len + win_size)
|
249 |
+
# key_end = min(start_idx + span_len, seq_len)
|
250 |
+
# key = x[:, key_start:key_end, :]
|
251 |
+
# value = x[:, key_start:key_end, :]
|
252 |
+
|
253 |
+
# attn_out, _ = self._focus(query, key, value, span_scale)
|
254 |
+
# output[:, start_idx:end_idx, :] = attn_out
|
255 |
+
|
256 |
+
# return output
|
257 |
+
|