Update README.md
Browse files
README.md
CHANGED
@@ -55,116 +55,104 @@ Scenario: If the model were to be deployed on low power devices.
|
|
55 |
|
56 |
Reasoning: You want to create as sparse of a weight distribution as possible, and this is done by a lower temperature.
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
class AdaptiveSpanAttention(nn.Module):
|
61 |
-
def __init__(self, base, dims, head, max_dist, win_size, max_span, temp_scale=0.01, sharpen_longer=False):
|
62 |
-
super().__init__()
|
63 |
-
|
64 |
-
self.max_dist = max_dist
|
65 |
-
self.win_size = win_size
|
66 |
-
self.max_span = max_span
|
67 |
-
self.temp_scale = temp_scale
|
68 |
-
self.multihead_attn = MultiheadAttention(base, dims, head, max_dist)
|
69 |
-
self.span_scale = nn.Parameter(torch.tensor(1.0))
|
70 |
-
self.sharpen_longer = sharpen_longer
|
71 |
-
|
72 |
-
|
73 |
-
def forward(self, query, key, value, span_scale):
|
74 |
-
span_len = int(self.max_span * span_scale.mean().item())
|
75 |
-
span_len = min(span_len, query.shape[1], key.shape[1], value.shape[1])
|
76 |
-
eff_span = min(span_len, self.max_dist)
|
77 |
-
|
78 |
-
q_span = query[:, :eff_span, :]
|
79 |
-
k_span = key[:, :eff_span, :]
|
80 |
-
v_span = value[:, :eff_span, :]
|
81 |
-
|
82 |
-
attn_out, attn_weights = self.multihead_attn(q_span, k_span, v_span)
|
83 |
-
|
84 |
-
if self.sharpen_longer:
|
85 |
-
temperature = 1.0 + self.temp_scale * (1.0 - span_scale.mean().item()) # Sharper for longer spans
|
86 |
-
else:
|
87 |
-
temperature = 0.5 + self.temp_scale * span_scale.mean().item() # Sharper for shorter spans
|
88 |
-
|
89 |
-
batch_size, _, dims = query.shape
|
90 |
-
scale = (dims // self.multihead_attn.head) ** -0.25
|
91 |
-
|
92 |
-
q = q_span.view(q_span.shape[0], q_span.shape[1], self.multihead_attn.head, -1).permute(0, 2, 1, 3)
|
93 |
-
k = k_span.view(k_span.shape[0], k_span.shape[1], self.multihead_attn.head, -1).permute(0, 2, 1, 3)
|
94 |
-
v = v_span.view(v_span.shape[0], v_span.shape[1], self.multihead_attn.head, -1).permute(0, 2, 1, 3)
|
95 |
-
|
96 |
-
attn_scores = torch.matmul(q, k.transpose(-2, -1))
|
97 |
-
attn_weights = torch.softmax((attn_scores / temperature) * scale, dim=-1)
|
98 |
-
attn_out = torch.matmul(attn_weights, v)
|
99 |
-
attn_out = attn_out.permute(0, 2, 1, 3).flatten(start_dim=2)
|
100 |
-
attn_out = attn_out.contiguous().view(batch_size, eff_span, dims)
|
101 |
-
|
102 |
-
return attn_out, attn_weights
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
Reasoning: You want to create as sparse of a weight distribution as possible, and this is done by a lower temperature.
|
57 |
|
58 |
+
### Focus block:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
class FocusAttention(nn.Module):
|
61 |
+
def __init__(self, base, dims, head, max_dist, sharpen, win_size=32, max_span=32, slid_win=32, temp_scale=0.01):
|
62 |
+
super().__init__()
|
63 |
+
self.base = base
|
64 |
+
self.dims = dims
|
65 |
+
self.head = head
|
66 |
+
self.max_dist = max_dist
|
67 |
+
self.sharpen = sharpen
|
68 |
+
self.win_size = win_size
|
69 |
+
self.max_span = max_span
|
70 |
+
self.slid_win = slid_win
|
71 |
+
self.temp_scale = temp_scale
|
72 |
+
|
73 |
+
self.span_scale_param = nn.Parameter(torch.tensor(1.0))
|
74 |
+
self.span_predictor = nn.Linear(in_features=dims, out_features=1)
|
75 |
+
|
76 |
+
self.multihead_attn_local = MultiheadAttention(base=base, dims=dims, head=head, max_dist=max_dist)
|
77 |
+
self.multihead_attn_global = MultiheadAttention(base=base, dims=dims, head=head, max_dist=max_dist)
|
78 |
+
|
79 |
+
self.ln_local = LayerNorm(normalized_shape=dims)
|
80 |
+
self.ln_global = LayerNorm(normalized_shape=dims)
|
81 |
+
self.projection = Linear(in_features=2 * dims, out_features=dims)
|
82 |
+
|
83 |
+
def forward(self, x):
|
84 |
+
|
85 |
+
local = self.ln_local(x)
|
86 |
+
global_ = self.ln_global(x)
|
87 |
+
|
88 |
+
globe_out, _ = self.multihead_attn_global(global_, global_, global_)
|
89 |
+
|
90 |
+
span_scale = torch.sigmoid(self.span_predictor(globe_out.mean(dim=1)))
|
91 |
+
|
92 |
+
win_size = max(1, int(self.slid_win * span_scale.mean().item()))
|
93 |
+
span_len = max(1, int(self.max_span * span_scale.mean().item()))
|
94 |
+
|
95 |
+
effective_max_dist = min(self.max_dist, local.size(1))
|
96 |
+
local_max_dist = min(self.max_dist, span_len, win_size)
|
97 |
+
globe_max_dist = effective_max_dist
|
98 |
+
|
99 |
+
self.multihead_attn_local.max_dist = local_max_dist
|
100 |
+
self.multihead_attn_global.max_dist = globe_max_dist
|
101 |
+
|
102 |
+
local_out = self._window(local, win_size, span_len, span_scale)
|
103 |
+
|
104 |
+
combined = torch.cat([local_out, globe_out], dim=-1)
|
105 |
+
x = self.projection(combined)
|
106 |
+
|
107 |
+
return x
|
108 |
+
|
109 |
+
def _window(self, x, win_size, span_len, span_scale):
|
110 |
+
batch_size, seq_len, dims = x.size()
|
111 |
+
num_windows = (seq_len + win_size - 1) // win_size
|
112 |
+
|
113 |
+
output = torch.zeros_like(x, device=x.device)
|
114 |
+
|
115 |
+
for i in range(num_windows):
|
116 |
+
start_idx = i * win_size
|
117 |
+
end_idx = min((i + 1) * win_size, seq_len)
|
118 |
+
query = x[:, start_idx:end_idx, :]
|
119 |
+
|
120 |
+
|
121 |
+
key_start = max(0, start_idx - span_len + win_size)
|
122 |
+
key_end = min(start_idx + span_len, seq_len)
|
123 |
+
key = x[:, key_start:key_end, :]
|
124 |
+
value = x[:, key_start:key_end, :]
|
125 |
+
|
126 |
+
attn_out, _ = self._focus(query, key, value, span_scale)
|
127 |
+
output[:, start_idx:end_idx, :] = attn_out
|
128 |
+
|
129 |
+
return output
|
130 |
+
|
131 |
+
def _focus(self, query, key, value, span_scale):
|
132 |
+
span_len = int(self.max_span * span_scale.mean().item())
|
133 |
+
span_len = min(span_len, query.size(1), key.size(1), value.size(1))
|
134 |
+
eff_span = min(span_len, self.max_dist)
|
135 |
+
|
136 |
+
q_span = query[:, :eff_span, :]
|
137 |
+
k_span = key[:, :eff_span, :]
|
138 |
+
v_span = value[:, :eff_span, :]
|
139 |
+
|
140 |
+
batch_size, seq_len, dims = q_span.size()
|
141 |
+
scale_factor = (dims // self.head) ** -0.25
|
142 |
+
|
143 |
+
q = q_span.view(batch_size, seq_len, self.head, -1).permute(0, 2, 1, 3)
|
144 |
+
k = k_span.view(batch_size, seq_len, self.head, -1).permute(0, 2, 1, 3)
|
145 |
+
v = v_span.view(batch_size, seq_len, self.head, -1).permute(0, 2, 1, 3)
|
146 |
+
|
147 |
+
if self.sharpen:
|
148 |
+
temperature = 1.0 + self.temp_scale * (1.0 - span_scale.mean().item())
|
149 |
+
else:
|
150 |
+
temperature = 0.5 + self.temp_scale * span_scale.mean().item()
|
151 |
+
|
152 |
+
attn_scores = torch.matmul(q, k.transpose(-2, -1))
|
153 |
+
attn_weights = torch.softmax((attn_scores / temperature) * scale_factor, dim=-1)
|
154 |
+
attn_out = torch.matmul(attn_weights, v)
|
155 |
+
|
156 |
+
attn_out = attn_out.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_len, -1)
|
157 |
+
|
158 |
+
return attn_out, attn_weights
|