Edit model card

Millad

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2265
  • Wer: 0.5465
  • Cer: 0.3162

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 4000
  • num_epochs: 750
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.2911 33.9 2000 2.2097 0.9963 0.6047
1.3419 67.8 4000 1.9042 0.7007 0.3565
0.6542 101.69 6000 1.7195 0.5985 0.3194
0.373 135.59 8000 2.2219 0.6078 0.3241
0.2805 169.49 10000 2.3114 0.6320 0.3304
0.2014 203.39 12000 2.6898 0.6338 0.3597
0.1611 237.29 14000 2.7808 0.6041 0.3379
0.1265 271.19 16000 2.8304 0.5632 0.3289
0.1082 305.08 18000 2.8373 0.5874 0.3344
0.103 338.98 20000 2.8580 0.5743 0.3292
0.0854 372.88 22000 2.5413 0.5539 0.3186
0.0675 406.78 24000 2.5523 0.5502 0.3229
0.0531 440.68 26000 2.9369 0.5483 0.3142
0.0504 474.58 28000 3.1416 0.5595 0.3225
0.0388 508.47 30000 2.5655 0.5390 0.3111
0.0396 542.37 32000 3.1923 0.5558 0.3178
0.0274 576.27 34000 2.9235 0.5520 0.3257
0.0361 610.17 36000 3.3828 0.5762 0.3312
0.02 644.07 38000 3.3822 0.5874 0.3466
0.0176 677.97 40000 3.1191 0.5539 0.3209
0.0181 711.86 42000 3.2022 0.5576 0.3237
0.0124 745.76 44000 3.2265 0.5465 0.3162

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.12.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.