Siyong commited on
Commit
5e765d0
·
1 Parent(s): 28297b9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: Millad
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # Millad
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 3.2265
18
+ - Wer: 0.5465
19
+ - Cer: 0.3162
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0001
39
+ - train_batch_size: 8
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: linear
44
+ - lr_scheduler_warmup_steps: 4000
45
+ - num_epochs: 750
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
51
+ |:-------------:|:------:|:-----:|:---------------:|:------:|:------:|
52
+ | 3.2911 | 33.9 | 2000 | 2.2097 | 0.9963 | 0.6047 |
53
+ | 1.3419 | 67.8 | 4000 | 1.9042 | 0.7007 | 0.3565 |
54
+ | 0.6542 | 101.69 | 6000 | 1.7195 | 0.5985 | 0.3194 |
55
+ | 0.373 | 135.59 | 8000 | 2.2219 | 0.6078 | 0.3241 |
56
+ | 0.2805 | 169.49 | 10000 | 2.3114 | 0.6320 | 0.3304 |
57
+ | 0.2014 | 203.39 | 12000 | 2.6898 | 0.6338 | 0.3597 |
58
+ | 0.1611 | 237.29 | 14000 | 2.7808 | 0.6041 | 0.3379 |
59
+ | 0.1265 | 271.19 | 16000 | 2.8304 | 0.5632 | 0.3289 |
60
+ | 0.1082 | 305.08 | 18000 | 2.8373 | 0.5874 | 0.3344 |
61
+ | 0.103 | 338.98 | 20000 | 2.8580 | 0.5743 | 0.3292 |
62
+ | 0.0854 | 372.88 | 22000 | 2.5413 | 0.5539 | 0.3186 |
63
+ | 0.0675 | 406.78 | 24000 | 2.5523 | 0.5502 | 0.3229 |
64
+ | 0.0531 | 440.68 | 26000 | 2.9369 | 0.5483 | 0.3142 |
65
+ | 0.0504 | 474.58 | 28000 | 3.1416 | 0.5595 | 0.3225 |
66
+ | 0.0388 | 508.47 | 30000 | 2.5655 | 0.5390 | 0.3111 |
67
+ | 0.0396 | 542.37 | 32000 | 3.1923 | 0.5558 | 0.3178 |
68
+ | 0.0274 | 576.27 | 34000 | 2.9235 | 0.5520 | 0.3257 |
69
+ | 0.0361 | 610.17 | 36000 | 3.3828 | 0.5762 | 0.3312 |
70
+ | 0.02 | 644.07 | 38000 | 3.3822 | 0.5874 | 0.3466 |
71
+ | 0.0176 | 677.97 | 40000 | 3.1191 | 0.5539 | 0.3209 |
72
+ | 0.0181 | 711.86 | 42000 | 3.2022 | 0.5576 | 0.3237 |
73
+ | 0.0124 | 745.76 | 44000 | 3.2265 | 0.5465 | 0.3162 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.17.0
79
+ - Pytorch 1.12.0+cu113
80
+ - Datasets 1.18.3
81
+ - Tokenizers 0.12.1