update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: Millad
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# Millad
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 3.2265
|
18 |
+
- Wer: 0.5465
|
19 |
+
- Cer: 0.3162
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0001
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- lr_scheduler_warmup_steps: 4000
|
45 |
+
- num_epochs: 750
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
51 |
+
|:-------------:|:------:|:-----:|:---------------:|:------:|:------:|
|
52 |
+
| 3.2911 | 33.9 | 2000 | 2.2097 | 0.9963 | 0.6047 |
|
53 |
+
| 1.3419 | 67.8 | 4000 | 1.9042 | 0.7007 | 0.3565 |
|
54 |
+
| 0.6542 | 101.69 | 6000 | 1.7195 | 0.5985 | 0.3194 |
|
55 |
+
| 0.373 | 135.59 | 8000 | 2.2219 | 0.6078 | 0.3241 |
|
56 |
+
| 0.2805 | 169.49 | 10000 | 2.3114 | 0.6320 | 0.3304 |
|
57 |
+
| 0.2014 | 203.39 | 12000 | 2.6898 | 0.6338 | 0.3597 |
|
58 |
+
| 0.1611 | 237.29 | 14000 | 2.7808 | 0.6041 | 0.3379 |
|
59 |
+
| 0.1265 | 271.19 | 16000 | 2.8304 | 0.5632 | 0.3289 |
|
60 |
+
| 0.1082 | 305.08 | 18000 | 2.8373 | 0.5874 | 0.3344 |
|
61 |
+
| 0.103 | 338.98 | 20000 | 2.8580 | 0.5743 | 0.3292 |
|
62 |
+
| 0.0854 | 372.88 | 22000 | 2.5413 | 0.5539 | 0.3186 |
|
63 |
+
| 0.0675 | 406.78 | 24000 | 2.5523 | 0.5502 | 0.3229 |
|
64 |
+
| 0.0531 | 440.68 | 26000 | 2.9369 | 0.5483 | 0.3142 |
|
65 |
+
| 0.0504 | 474.58 | 28000 | 3.1416 | 0.5595 | 0.3225 |
|
66 |
+
| 0.0388 | 508.47 | 30000 | 2.5655 | 0.5390 | 0.3111 |
|
67 |
+
| 0.0396 | 542.37 | 32000 | 3.1923 | 0.5558 | 0.3178 |
|
68 |
+
| 0.0274 | 576.27 | 34000 | 2.9235 | 0.5520 | 0.3257 |
|
69 |
+
| 0.0361 | 610.17 | 36000 | 3.3828 | 0.5762 | 0.3312 |
|
70 |
+
| 0.02 | 644.07 | 38000 | 3.3822 | 0.5874 | 0.3466 |
|
71 |
+
| 0.0176 | 677.97 | 40000 | 3.1191 | 0.5539 | 0.3209 |
|
72 |
+
| 0.0181 | 711.86 | 42000 | 3.2022 | 0.5576 | 0.3237 |
|
73 |
+
| 0.0124 | 745.76 | 44000 | 3.2265 | 0.5465 | 0.3162 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.17.0
|
79 |
+
- Pytorch 1.12.0+cu113
|
80 |
+
- Datasets 1.18.3
|
81 |
+
- Tokenizers 0.12.1
|