wav2vec-base-Millad_TIMIT

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3772
  • Wer: 0.6859
  • Cer: 0.3217

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5000
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
No log 2.36 2000 2.6233 1.0130 0.6241
No log 4.73 4000 2.2206 0.9535 0.5032
No log 7.09 6000 2.3036 0.9368 0.5063
1.235 9.46 8000 1.9932 0.9275 0.5032
1.235 11.82 10000 2.0207 0.8922 0.4498
1.235 14.18 12000 1.6171 0.7993 0.3976
1.235 16.55 14000 1.6729 0.8309 0.4209
0.2779 18.91 16000 1.7043 0.8141 0.4340
0.2779 21.28 18000 1.7426 0.7658 0.3960
0.2779 23.64 20000 1.5230 0.7361 0.3830
0.2779 26.0 22000 1.4286 0.7658 0.3794
0.1929 28.37 24000 1.4450 0.7379 0.3644
0.1929 30.73 26000 1.5922 0.7491 0.3826
0.1929 33.1 28000 1.4443 0.7454 0.3617
0.1929 35.46 30000 1.5450 0.7268 0.3621
0.1394 37.83 32000 1.9268 0.7491 0.3763
0.1394 40.19 34000 1.7094 0.7342 0.3783
0.1394 42.55 36000 1.4024 0.7082 0.3494
0.1394 44.92 38000 1.4467 0.6840 0.3395
0.104 47.28 40000 1.4145 0.6933 0.3407
0.104 49.65 42000 1.3901 0.6970 0.3403
0.104 52.01 44000 1.3589 0.6636 0.3348
0.104 54.37 46000 1.3716 0.6952 0.3340
0.0781 56.74 48000 1.4025 0.6896 0.3312
0.0781 59.1 50000 1.3772 0.6859 0.3217

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.12.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.