|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
datasets: |
|
- HuggingFaceTB/smollm-corpus |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
|
|
# **Doge 20M** |
|
|
|
<div align="center"> |
|
<img src="https://huggingface.co/spaces/SmallDoge/README/resolve/main/org_icon.png" width="100%" alt="SmallDoge" /> |
|
</div> |
|
<hr> |
|
<div align="center"> |
|
<a href="https://arxiv.org/abs/2412.11834" target="_blank" style="margin: 2px;"> |
|
<img alt="arXiv" src="https://img.shields.io/static/v1?label=arXiv&message=2412.11834&color=B31B1B&logo=arXiv" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://github.com/SmallDoges/small-doge" target="_blank" style="margin: 2px;"> |
|
<img alt="GitHub" src="https://img.shields.io/badge/GitHub-SmallDoge-181717?logo=github" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://huggingface.co/SmallDoge" target="_blank" style="margin: 2px;"> |
|
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-SmallDoge-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://github.com/SmallDoges/small-doge/blob/main/LICENSE" style="margin: 2px;"> |
|
<img alt="License" src="https://img.shields.io/badge/License-Apache--2.0-blue.svg" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
</div> |
|
|
|
Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by [SmallDoge](https://huggingface.co/SmallDoge) community, for detailed algorithm and model architecture, please refer to [Wonderful Matrices](https://arxiv.org/abs/2412.11834), all training details and code are publicly available on the [small-doge](https://github.com/SmallDoges/small-doge) repository. |
|
|
|
|
|
## Uses |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-20M") |
|
>>> model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-20M", trust_remote_code=True) |
|
>>> inputs = tokenizer("Hey how are you doing?", return_tensors="pt") |
|
|
|
>>> out = model.generate(**inputs, max_new_tokens=100) |
|
>>> print(tokenizer.batch_decode(out)) |
|
``` |
|
|
|
|
|
## Model Details |
|
|
|
We build the Doge by doing Per-Training on [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus). |
|
|
|
> NOTE: If you want to continue pre-training this model, you can find the unconverged checkpoint [here](https://huggingface.co/SmallDoge/Doge-20M-checkpoint). |
|
|
|
> NOTE: These models has not been fine-tuned for instruction, the instruction model is [here](https://huggingface.co/SmallDoge/Doge-20M-Instruct). |
|
|
|
> TODO: The larger model is under training and will be uploaded soon. |
|
|
|
**Pre-Training**: |
|
|
|
| Model | Training Data | Steps | Content Length | Tokens | LR | Batch Size | Precision | |
|
|---|---|---|---|---|---|---|---| |
|
| [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 8k | 2048 | 4B | 8e-3 | 0.5M | bfloat16 | |
|
| [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 16k | 2048 | 16B | 6e-3 | 1M | bfloat16 | |
|
|
|
**Evaluation**: |
|
|
|
| Model | MMLU | TriviaQA | ARC-E | ARC-C | PIQA | HellaSwag | OBQA | Winogrande | tokens / s on CPU | |
|
|---|---|---|---|---|---|---|---|---|---| |
|
| [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | 25.43 | 0.03 | 36.83 | 22.78 | 58.38 | 27.25 | 25.60 | 50.20 | 142 | |
|
| [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | 26.41 | 0.18 | 50.46 | 25.34 | 61.43 | 31.45 | 28.00 | 50.75 | 62 | |
|
|
|
> All evaluations are done using five-shot settings, without additional training on the benchmarks. |
|
|
|
|
|
**Procedure**: |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/p8x93v5l) |
|
|
|
|
|
**Environment**: |
|
|
|
- Image: nvcr.io/nvidia/pytorch:24.12-py3 |
|
- Hardware: 1x NVIDIA RTX 4090 |
|
- Software: Transformers |
|
|
|
|
|
## Citation |
|
|
|
```bibtex |
|
@misc{shi2024wonderfulmatrices, |
|
title={Wonderful Matrices: Combining for a More Efficient and Effective Foundation Model Architecture}, |
|
author={Jingze Shi and Bingheng Wu}, |
|
year={2024}, |
|
eprint={2412.11834}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG}, |
|
url={https://arxiv.org/abs/2412.11834}, |
|
} |
|
``` |