Mohamadlh's picture
Update README.md
844fbbf
|
raw
history blame
1.56 kB
metadata
license: apache-2.0
datasets:
  - AyoubChLin/CNN_News_Articles_2011-2022
language:
  - en
metrics:
  - accuracy
pipeline_tag: text-classification
tags:
  - news classification
widget:
  - text: money in the pocket
  - text: no one can win this cup in quatar..

Fine-Tuned BART Model for Text Classification on CNN News Articles

This is a fine-tuned BART (Bidirectional and Auto-Regressive Transformers) model for text classification on CNN news articles. The model was fine-tuned on a dataset of CNN news articles with labels indicating the article topic, using a batch size of 32, learning rate of 6e-5, and trained for one epoch.

How to Use

Install

pip install transformers

Example Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("IT-community/BART_cnn_news_text_classification")
model = AutoModelForSequenceClassification.from_pretrained("IT-community/BART_cnn_news_text_classification")

# Tokenize input text
text = "This is an example CNN news article about politics."
inputs = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors="pt")

# Make prediction
outputs = model(inputs["input_ids"], attention_mask=inputs["attention_mask"])
predicted_label = torch.argmax(outputs.logits)

print(predicted_label)

Evaluation

The model achieved the following performance metrics on the test set:

Accuracy: 0.9591836734693877

F1-score: 0.958301875401112

Recall: 0.9591836734693877

Precision: 0.9579673040369542