SnakeCLEF2024 / create_model.py
Someshfengde's picture
Upload folder using huggingface_hub
822ac71
#%%
# coding=utf-8
# Copyright 2024 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Hiera model."""
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
import transformers
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BackboneOutput,
BaseModelOutput,
BaseModelOutputWithPooling,
ImageClassifierOutput,
ModelOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from transformers.utils.backbone_utils import BackboneMixin
# coding=utf-8
# Copyright 2024 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Hiera model configuration"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfig
from transformers.utils import logging
from transformers.utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
HIERA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"EduardoPacheco/hiera-tiny-224": "https://huggingface.co/EduardoPacheco/hiera-tiny-224/resolve/main/config.json",
}
class HieraConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`HieraModel`]. It is used to instantiate an Hiera
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Hiera
[EduardoPacheco/hiera-base-224](https://huggingface.co/EduardoPacheco/hiera-base-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
embed_dim (`int`, *optional*, defaults to 96):
Dimensionality of patch embedding.
input_size (`list(int)`, *optional*, defaults to `[224, 224]`):
The size (resolution) of input in the format (height, width) for images
and (frames, height, width) for videos.
patch_kernel (`list(int)`, *optional*, defaults to `[7, 7]`):
The size (resolution) of each patch.
patch_stride (`list(int)`, *optional*, defaults to `[4, 4]`):
The stride of the patch.
patch_padding (`list(int)`, *optional*, defaults to `[3, 3]`):
The padding of the patch.
mlp_ratio (`float`, *optional*, defaults to 4.0):
The ratio of mlp hidden dim to embedding dim.
depths (`list(int)`, *optional*, defaults to `[2, 3, 16, 3]`):
Depth of each layer in the Transformer encoder.
initial_num_heads (`int`, *optional*, defaults to 1):
Initial number of attention heads in the first layer of the Transformer encoder.
num_head_multiplier (`float`, *optional*, defaults to 2.0):
The multiplier to the number of attention heads in each layer of the Transformer encoder.
embed_dim_multiplier (`float`, *optional*, defaults to 2.0):
The multiplier to the dimensionality of patch embedding in each layer of the Transformer encoder.
num_query_pool (`int`, *optional*, defaults to 3):
The number of query pool stages.
query_stride (`list(int)`, *optional*, defaults to `[2, 2]`):
The stride of the query pool.
masked_unit_size (`list(int)`, *optional*, defaults to `[8, 8]`):
The size of the masked unit.
masked_unit_attention (`list(bool)`, *optional*, defaults to `[True, True, False, False]`):
Whether to use masked unit attention in each layer of the Transformer encoder.
drop_path_rate (`float`, *optional*, defaults to 0.0):
The drop path rate.
sep_pos_embed (`bool`, *optional*, defaults to `False`):
Whether to use separate position embedding for temporal and spatial dimensions. Must be `True` for videos.
and `False` for images.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
`"selu"` and `"gelu_new"` are supported.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices and
the zero_initializer for initializing all bias vectors.
layer_norm_init (`float`, *optional*, defaults to 1.0):
The initial weight value for layer normalization layers.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
decoder_embed_dim (`int`, *optional*):
Dimensionality of decoder embeddings for MAE pretraining.
decoder_depth (`int`, *optional*):
Depth of the decoder for MAE pretraining.
decoder_num_heads (`int`, *optional*):
Number of attention heads in each layer of the decoder for MAE pretraining.
norm_pix_loss (`bool`, *optional*, defaults to `True`):
Whether to normalize the pixel loss by the number of pixels.
mask_ratio (`float`, *optional*, defaults to 0.6):
The ratio of masked tokens in the input.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
Example:
```python
>>> from transformers import HieraConfig, HieraModel
>>> # Initializing a Hiera hiera-base-patch16-224 style configuration
>>> configuration = HieraConfig()
>>> # Initializing a model (with random weights) from the hiera-base-patch16-224 style configuration
>>> model = HieraModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "hiera"
attribute_map = {"num_hidden_layers": "num_layers"}
def __init__(
self,
embed_dim=96,
input_size=[224, 224],
patch_kernel=[7, 7],
patch_stride=[4, 4],
patch_padding=[3, 3],
mlp_ratio=4.0,
depths=[2, 3, 16, 3],
initial_num_heads=1,
num_head_multiplier=2.0,
embed_dim_multiplier=2.0,
num_query_pool=3,
query_stride=[2, 2],
masked_unit_size=[8, 8],
masked_unit_attention=[True, True, False, False],
drop_path_rate=0.0,
sep_pos_embed=False,
num_channels=3,
hidden_act="gelu",
initializer_range=0.02,
layer_norm_init=1.0,
layer_norm_eps=1e-6,
decoder_embed_dim=None,
decoder_depth=None,
decoder_num_heads=None,
norm_pix_loss=True,
mask_ratio=0.6,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
if masked_unit_size[0] % query_stride[0] ** (len(depths) - 1) != 0:
raise ValueError(
f"masked_unit_size[0] ({masked_unit_size[0]}) must be divisible by query_stride[0] ({query_stride[0]}) "
f"raised to the power of the number of layers ({len(depths) - 1})"
)
if num_query_pool >= len(depths):
raise ValueError(
f"num_query_pool ({num_query_pool}) must be less than the number of layers ({len(depths)})"
)
self.embed_dim = embed_dim
self.input_size = input_size
self.patch_kernel = patch_kernel
self.patch_stride = patch_stride
self.patch_padding = patch_padding
self.mlp_ratio = mlp_ratio
self.depths = depths
self.num_layers = len(depths)
self.initial_num_heads = initial_num_heads
self.num_head_multiplier = num_head_multiplier
self.embed_dim_multiplier = embed_dim_multiplier
self.num_query_pool = num_query_pool
self.query_stride = query_stride
self.masked_unit_size = masked_unit_size
self.masked_unit_attention = masked_unit_attention
self.drop_path_rate = drop_path_rate
self.sep_pos_embed = sep_pos_embed
self.num_channels = num_channels
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.layer_norm_init = layer_norm_init
self.layer_norm_eps = layer_norm_eps
self.decoder_embed_dim = decoder_embed_dim
self.decoder_depth = decoder_depth
self.decoder_num_heads = decoder_num_heads
self.norm_pix_loss = norm_pix_loss
self.mask_ratio = mask_ratio
# we set the hidden_size attribute in order to make Hiera work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
self.hidden_size = int(embed_dim * embed_dim_multiplier ** (len(depths) - 1))
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
class HieraOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "HieraConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "EduardoPacheco/hiera-tiny-224"
_EXPECTED_OUTPUT_SHAPE = [1, 49, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "EduardoPacheco/hiera-tiny-224-in1k"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
HIERA_PRETRAINED_MODEL_ARCHIVE_LIST = [
"EduardoPacheco/hiera-tiny-224",
# See all Hiera models at https://huggingface.co/models?filter=hiera
]
@dataclass
class HieraEncoderOutput(ModelOutput):
"""
Hiera encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. Thesre are the unrolled hidden states of the model.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, height, width, hidden_size)`. These are the reshaped and re-rolled hidden states of the model.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class HieraModelOutput(ModelOutput):
"""
Hiera model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Tensor indicating which patches are masked (0) and which are not (1).
ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Tensor containing the original index of the (shuffled) masked patches.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. These are the unrolled hidden states of the model.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, height, width, hidden_size)`. These are the reshaped and re-rolled hidden states of the model.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: Optional[torch.FloatTensor] = None
mask: torch.LongTensor = None
ids_restore: torch.LongTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class HieraForImageClassificationOutput(ImageClassifierOutput):
"""
Hiera image classification outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, `optional`):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
Prediction scores of the classification head (logits of the output layer).
hidden_states (`tuple(torch.FloatTensor)`, `optional`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. These are the unrolled hidden states of the model.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, `optional`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, `optional`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, height, width, hidden_size)`. These are the reshaped and re-rolled hidden states of the model.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class HieraForPreTrainingOutput(ModelOutput):
"""
Class for ViTMAEForPreTraining's outputs, with potential hidden states and attentions.
Args:
loss (`torch.FloatTensor` of shape `(1,)`):
Pixel reconstruction loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`):
Pixel reconstruction logits.
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Tensor indicating which patches are masked (0) and which are not (1).
ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Tensor containing the original index of the (shuffled) masked patches.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, height, width, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs reshaped to include the spatial dimensions.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
mask: torch.LongTensor = None
ids_restore: torch.LongTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
# Taken from https://github.com/facebookresearch/hiera/blob/main/hiera/hiera_utils.py#L73
def conv_nd(n: int) -> nn.Module:
"""
Returns a conv with nd (e.g., Conv2d for n=2). Work up to n=3.
If you wanted a 4d Hiera, you could probably just implement this for n=4. (no promises)
"""
return [nn.Identity, nn.Conv1d, nn.Conv2d, nn.Conv3d][n]
# Taken from https://github.com/facebookresearch/hiera/blob/main/hiera/hiera_utils.py#L81
def do_pool(x: torch.Tensor, stride: int) -> torch.Tensor:
# Refer to `Unroll` to see how this performs a maxpool-Nd
return x.view(x.shape[0], stride, -1, x.shape[-1]).max(dim=1).values
class HieraPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config, is_mae: bool = False):
super().__init__()
# Support any number of spatial dimensions
self.spatial_dims = len(config.patch_kernel)
if self.spatial_dims not in (2, 3):
raise ValueError(
f"The number of dimensions of the input image should be 2 or 3, but got {self.spatial_dims}."
)
self.num_channels = config.num_channels
self.image_size = config.input_size[-2:]
self.tokens_spatial_shape = [i // s for i, s in zip(config.input_size, config.patch_stride)]
self.mask_spatial_shape = [i // s for i, s in zip(self.tokens_spatial_shape, config.masked_unit_size)]
self.mask_ratio = config.mask_ratio
self.is_mae = is_mae
self.projection = conv_nd(self.spatial_dims)(
self.num_channels,
config.embed_dim,
kernel_size=config.patch_kernel,
stride=config.patch_stride,
padding=config.patch_padding,
)
def masked_conv(self, pixel_values: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Zero-out the masked regions of the input before conv.
Prevents leakage of masked regions when using overlapping kernels.
"""
if mask is None:
return self.projection(pixel_values)
target_size = pixel_values.shape[2:]
# Reshape mask to (batch_size, 1, mask_unit_height, mask_unit_width)
mask = mask.view(pixel_values.shape[0], 1, *self.mask_spatial_shape)
if len(mask.shape[2:]) != len(target_size):
raise ValueError(
f"The length of the spatial dimensions of the mask should match the one from input image, but got {len(mask.shape[2:])} and {len(target_size)}."
)
if mask.shape[2:] != target_size:
mask = nn.functional.interpolate(mask, size=target_size)
return self.projection(pixel_values * mask.bool())
def random_masking(self, pixel_values, noise=None):
"""
Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random
noise.
Args:
pixel_values (`torch.LongTensor` of shape `(batch_size, num_channels, height, width)`)
noise (`torch.FloatTensor` of shape `(batch_size, num_mask_units)`, *optional*) which is
mainly used for testing purposes to control randomness and maintain the reproducibility
"""
batch_size = pixel_values.shape[0]
# Tokens selected for masking at mask unit level
num_windows = math.prod(self.mask_spatial_shape)
len_keep = int(num_windows * (1 - self.mask_ratio))
if noise is None:
noise = torch.rand(batch_size, num_windows, device=pixel_values.device)
# Sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1)
# ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# Generate the binary mask: 1 is *keep*, 0 is *remove*
# Note this is opposite to original MAE
mask = torch.zeros([batch_size, num_windows], device=pixel_values.device)
mask[:, :len_keep] = 1
# Unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return mask, ids_restore
def forward(
self,
pixel_values: torch.Tensor,
noise: Optional[torch.FloatTensor] = None,
interpolate_pos_encoding: bool = False,
) -> torch.Tensor:
num_channels = pixel_values.shape[1]
height, width = pixel_values.shape[-2:]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
f" Expected {self.num_channels} but got {num_channels}."
)
if not interpolate_pos_encoding:
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size[0]}*{self.image_size[1]})."
)
(mask, ids_restore) = self.random_masking(pixel_values, noise=noise) if self.is_mae else (None, None)
embeddings = self.masked_conv(pixel_values, mask)
embeddings = embeddings.flatten(2).transpose(2, 1)
return embeddings, mask, ids_restore
class HieraEmbeddings(nn.Module):
"""
Construct position and patch embeddings.
"""
def __init__(self, config: HieraConfig, is_mae: bool = False) -> None:
super().__init__()
self.patch_stride = config.patch_stride
self.tokens_spatial_shape = [i // s for i, s in zip(config.input_size, config.patch_stride)]
self.mask_spatial_shape = [i // s for i, s in zip(self.tokens_spatial_shape, config.masked_unit_size)]
self.num_tokens = math.prod(self.tokens_spatial_shape)
self.sep_pos_embed = config.sep_pos_embed
self.is_mae = is_mae
self.patch_embeddings = HieraPatchEmbeddings(config, is_mae=is_mae)
if self.sep_pos_embed:
self.position_embeddings_spatial = nn.Parameter(
torch.zeros(
1,
self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
config.embed_dim,
)
)
self.position_embeddings_temporal = nn.Parameter(
torch.zeros(1, self.tokens_spatial_shape[0], config.embed_dim)
)
else:
self.position_embeddings = nn.Parameter(torch.zeros(1, self.num_tokens, config.embed_dim))
def interpolate_pos_encoding(
self, embeddings: torch.Tensor, pos_embeds: torch.Tensor, height: int, width: int
) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Adapted from:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
num_patches = embeddings.shape[1]
num_positions = pos_embeds.shape[1]
if num_patches == num_positions and height == width:
return pos_embeds
dim = embeddings.shape[-1]
h0 = height // self.patch_stride[0] if not self.sep_pos_embed else height // self.patch_stride[1]
w0 = width // self.patch_stride[1] if not self.sep_pos_embed else width // self.patch_stride[2]
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
h0, w0 = h0 + 0.1, w0 + 0.1
pos_embeds = pos_embeds.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
pos_embeds = pos_embeds.permute(0, 3, 1, 2)
pos_embeds = nn.functional.interpolate(
pos_embeds,
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
mode="bicubic",
align_corners=False,
)
if int(h0) != pos_embeds.shape[-2] or int(w0) != pos_embeds.shape[-1]:
raise ValueError("The interpolated position encoding does not have the right size")
pos_embeds = pos_embeds.permute(0, 2, 3, 1).view(1, -1, dim)
return pos_embeds
def get_position_embedding(
self, embeddings: torch.Tensor, height: int, width: int, interpolate_pos_encoding: bool
) -> torch.Tensor:
if self.sep_pos_embed:
spatial = self.position_embeddings_spatial
spatial = (
self.interpolate_pos_encoding(embeddings, spatial, height, width)
if interpolate_pos_encoding
else spatial
)
spatial = spatial.repeat(1, self.tokens_spatial_shape[0], 1)
temporal = torch.repeat_interleave(
self.position_embeddings_temporal,
self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
dim=1,
)
return spatial + temporal
else:
position_embeddings = self.position_embeddings
position_embeddings = (
self.interpolate_pos_encoding(embeddings, position_embeddings, height, width)
if interpolate_pos_encoding
else position_embeddings
)
return position_embeddings
def forward(
self,
pixel_values: torch.Tensor,
noise: Optional[torch.FloatTensor] = None,
interpolate_pos_encoding: bool = False,
) -> torch.Tensor:
if len(self.tokens_spatial_shape) == 2:
batch_size, num_channels, height, width = pixel_values.shape
else:
batch_size, num_channels, depth, height, width = pixel_values.shape
embeddings, mask, ids_restore = self.patch_embeddings(
pixel_values, noise=noise, interpolate_pos_encoding=interpolate_pos_encoding
)
embeddings = embeddings + self.get_position_embedding(embeddings, height, width, interpolate_pos_encoding)
return embeddings, mask, ids_restore
class HieraMaskUnitAttention(nn.Module):
"""
Computes either Mask Unit or Global Attention. Also is able to perform q pooling.
Note: this assumes the tokens have already been flattened and unrolled into mask units.
"""
def __init__(
self,
dim: int,
dim_out: int,
num_heads: int,
query_stride: int = 1,
window_size: int = 0,
use_mask_unit_attn: bool = False,
):
super().__init__()
self.dim = dim
self.dim_out = dim_out
self.num_heads = num_heads
self.query_stride = query_stride
self.head_dim = dim_out // num_heads
self.scale = (self.head_dim) ** -0.5
self.qkv = nn.Linear(dim, 3 * dim_out)
self.proj = nn.Linear(dim_out, dim_out)
self.window_size = window_size
self.use_mask_unit_attn = use_mask_unit_attn
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: bool = False,
) -> torch.Tensor:
"""Input should be of shape [batch, tokens, channels]."""
batch_size, seq_len, _ = hidden_states.shape
num_windows = 1
if self.use_mask_unit_attn:
num_windows = seq_len // (self.query_stride * self.window_size)
qkv = self.qkv(hidden_states)
qkv = qkv.reshape(batch_size, -1, num_windows, 3, self.num_heads, self.head_dim)
qkv = qkv.permute(3, 0, 4, 2, 1, 5)
query, key, value = qkv.unbind(0)
if self.query_stride > 1:
# Refer to Unroll to see how this performs a maxpool-Nd
query = query.view(batch_size, self.num_heads, num_windows, self.query_stride, -1, self.head_dim)
query = query.max(dim=3).values
attn_weights = (query * self.scale) @ key.transpose(-1, -2)
attn_weights = attn_weights.softmax(dim=-1)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = attn_weights @ value
attn_output = attn_output.transpose(1, 3).reshape(batch_size, -1, self.dim_out)
attn_output = self.proj(attn_output)
return (attn_output, attn_weights) if output_attentions else (attn_output, None)
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Hiera
class HieraDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class HieraMlp(nn.Module):
def __init__(self, config, dim: int):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(dim, int(dim * config.mlp_ratio))
self.fc2 = nn.Linear(int(dim * config.mlp_ratio), dim)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class HieraLayer(nn.Module):
def __init__(
self,
config,
dim: int,
dim_out: int,
num_heads: int,
drop_path: float = 0.0,
query_stride: int = 1,
window_size: int = 0,
use_mask_unit_attn: bool = False,
):
super().__init__()
self.dim = dim
self.dim_out = dim_out
self.query_stride = query_stride
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.attn = HieraMaskUnitAttention(dim, dim_out, num_heads, query_stride, window_size, use_mask_unit_attn)
self.layernorm_after = nn.LayerNorm(dim_out, eps=config.layer_norm_eps)
self.mlp = HieraMlp(config, dim_out)
self.drop_path = HieraDropPath(drop_path) if drop_path > 0 else nn.Identity()
if dim != dim_out:
self.proj = nn.Linear(dim, dim_out)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: bool = False,
) -> torch.Tensor:
batch_size, seq_len, _ = hidden_states.shape
# Attention + Q Pooling
hidden_states_norm = self.layernorm_before(hidden_states)
if self.dim != self.dim_out:
hidden_states = self.proj(hidden_states_norm)
# Refer to `HieraUnroll` to see how this performs a maxpool-Nd
hidden_states = hidden_states.view(batch_size, self.query_stride, -1, self.dim_out).max(dim=1).values
(hidden_states_norm, attn_weights) = self.attn(
hidden_states_norm, head_mask, output_attentions=output_attentions
)
hidden_states = hidden_states + self.drop_path(hidden_states_norm)
residual = hidden_states
hidden_states = self.layernorm_after(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.drop_path(hidden_states)
return (hidden_states, attn_weights)
class HieraStage(nn.Module):
def __init__(
self,
config,
depth: int,
dim: int,
dim_out: int,
num_heads: int,
drop_path: List[float],
query_stride: List[int],
window_size: int,
use_mask_unit_attn: bool,
stage_num: Optional[int] = None,
) -> None:
super().__init__()
# we need to know if the previous stage used masked attention
# mask unit or global attention.
# lag by 1 layer, so that global attention,
# applied post pooling on lower resolution
previous_stage_used_masked_attention = False
if stage_num is not None:
previous_stage_used_masked_attention = config.masked_unit_attention[stage_num - 1 if stage_num > 0 else 0]
self.layers = nn.ModuleList(
[
HieraLayer(
config=config,
dim=dim if i == 0 else dim_out,
dim_out=dim_out,
num_heads=num_heads,
drop_path=drop_path[i],
query_stride=query_stride[i],
window_size=window_size,
use_mask_unit_attn=use_mask_unit_attn or (previous_stage_used_masked_attention and i == 0),
)
for i in range(depth)
]
)
def forward(
self, hidden_states: torch.Tensor, head_mask: Optional[torch.FloatTensor], output_attentions: bool = False
) -> torch.Tensor:
for i, layer_module in enumerate(self.layers):
layer_head_mask = head_mask[i] if head_mask is not None else None
(hidden_states, attn_weights) = layer_module(
hidden_states, layer_head_mask, output_attentions=output_attentions
)
return hidden_states, attn_weights
def undo_windowing(hidden_states: torch.Tensor, shape: List[int], mask_unit_shape: List[int]) -> torch.Tensor:
"""
Restore spatial organization by undoing windowed organization of mask units.
"""
num_dims = len(shape)
batch_size, hidden_size = hidden_states.shape[0], hidden_states.shape[-1]
# From: [batch_size, num_mask_unit_height*num_#mask_unit_wdith, mask_unit_height, mask_unit_width, hidden_size]
# To: [batch_size, num_mask_unit_height, num_mask_unit_width, mask_unit_height, mask_unit_width, hidden_size]
num_mask_units = [s // mu for s, mu in zip(shape, mask_unit_shape)]
hidden_states = hidden_states.view(batch_size, *num_mask_units, *mask_unit_shape, hidden_size)
# From: [batch_size, num_mask_unit_height, num_mask_unit_width, mask_unit_height, mask_unit_width, hidden_size]
# To: [batch_size, num_mask_unit_height*mask_unit_height, num_mask_unit_width*mask_unit_width, hidden_size]
permute = (
[0]
+ sum(
[list(p) for p in zip(range(1, 1 + num_dims), range(1 + num_dims, 1 + 2 * num_dims))],
[],
)
+ [len(hidden_states.shape) - 1]
)
hidden_states = hidden_states.permute(permute).reshape(batch_size, *shape, hidden_size)
return hidden_states
class HieraEncoder(nn.Module):
def __init__(self, config: HieraConfig) -> None:
super().__init__()
self.config = config
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
# query strides rule
stage_ends = [sum(config.depths[:i]) - 1 for i in range(1, len(config.depths) + 1)]
query_pool_layer = [stage_end + 1 for stage_end in stage_ends[: config.num_query_pool]]
query_strides = [
math.prod(config.query_stride) if i in query_pool_layer else 1 for i in range(sum(config.depths))
]
# Transformer blocks
self.stages = nn.ModuleList()
embed_dim = config.embed_dim
for idx_stage, depth in enumerate(config.depths):
dim_out = int(config.embed_dim * config.embed_dim_multiplier**idx_stage)
stage = HieraStage(
config=config,
depth=depth,
dim=embed_dim,
dim_out=dim_out,
num_heads=int(config.initial_num_heads * config.num_head_multiplier**idx_stage),
drop_path=dpr[sum(config.depths[:idx_stage]) : sum(config.depths[: idx_stage + 1])],
query_stride=query_strides[sum(config.depths[:idx_stage]) : sum(config.depths[: idx_stage + 1])],
window_size=int(math.prod(config.masked_unit_size) * math.prod(config.query_stride) ** -idx_stage),
use_mask_unit_attn=config.masked_unit_attention[idx_stage],
stage_num=idx_stage,
)
embed_dim = dim_out
self.stages.append(stage)
# Setting reroll schedule
# The first stage has to reverse everything
# The next stage has to reverse all but the first unroll, etc.
stage_size = [i // s for i, s in zip(config.input_size, config.patch_stride)]
unroll_schedule = [config.query_stride] * len(config.depths[:-1])
self.schedule = {}
for idx_stage in range(len(config.depths)):
self.schedule[idx_stage] = unroll_schedule, stage_size
if idx_stage < config.num_query_pool:
stage_size = [i // s for i, s in zip(stage_size, config.query_stride)]
unroll_schedule = unroll_schedule[1:]
self.gradient_checkpointing = False
def reroll(
self, hidden_states: torch.Tensor, stage_idx: int, mask: Optional[torch.BoolTensor] = None
) -> torch.Tensor:
"""
Roll the given tensor back up to spatial order assuming it's from the given block.
If no mask is provided returns:
- [batch_size, height, width, hidden_size] for 2d
- [batch_size, frames, height, width, hidden_size] for 3d
If a mask is provided returns:
- [batch_size, num_mask_units, mask_unit_height, mask_unit_width, hidden_size] for 2d
"""
schedule, size = self.schedule[stage_idx]
batch_size, seq_len, hidden_size = hidden_states.shape
num_dim = len(size)
mask_unit_shape = [1] * num_dim
for strides in schedule:
# Extract the current patch from seq_len
hidden_states = hidden_states.view(
batch_size, *strides, seq_len // math.prod(strides), *mask_unit_shape, hidden_size
)
# Move that patch into the current MU
# Example in 2d:
# Input: [batch_size, stride, stride, seq_len//(stride*stride), mask_unit_height, mask_unit_width, hidden_size]
# Output: [batch_size, seq_len//(stride*stride), stride, mask_unit_height, stride, mask_unit_width, hidden_size]
L = len(hidden_states.shape)
permute = (
[0, 1 + num_dim]
+ sum(
[list(p) for p in zip(range(1, 1 + num_dim), range(1 + num_dim + 1, L - 1))],
[],
)
+ [L - 1]
)
hidden_states = hidden_states.permute(permute)
# Reshape to [batch_size, seq_len//(stride*stride), *mask_units, hidden_size]
for i in range(num_dim):
mask_unit_shape[i] *= strides[i]
hidden_states = hidden_states.reshape(batch_size, -1, *mask_unit_shape, hidden_size)
seq_len = hidden_states.shape[1]
# Current shape (e.g., 2d: [batch_size, #num_mask_units_height*#num_mask_units_width, mask_unit_height, mask_unit_width, hidden_size])
hidden_states = hidden_states.view(batch_size, seq_len, *mask_unit_shape, hidden_size)
# If masked, return [batch_size, num_mask_units, mask_unit_height, mask_unit_width, hidden_size]
if mask is not None:
return hidden_states
# If not masked, we can return [batch_size, height, width, hidden_size]
hidden_states = undo_windowing(hidden_states, size, mask_unit_shape)
return hidden_states
def forward(
self,
hidden_states: torch.Tensor,
mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
reshaped_hidden_states = self.reroll(hidden_states, stage_idx=0, mask=mask)
all_reshaped_hidden_states = all_reshaped_hidden_states + (reshaped_hidden_states,)
for i, stage_module in enumerate(self.stages):
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
stage_module.__call__, hidden_states, layer_head_mask, output_attentions
)
else:
layer_outputs = stage_module(hidden_states, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
reshaped_hidden_states = self.reroll(hidden_states, stage_idx=i, mask=mask)
all_reshaped_hidden_states = all_reshaped_hidden_states + (reshaped_hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return HieraEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
reshaped_hidden_states=all_reshaped_hidden_states,
)
def unroll(hidden_states: torch.Tensor, size: List[int], schedule: List[List[int]]) -> torch.Tensor:
"""
Reorders the tokens such that patches are contiguous in memory.
E.g., given [batch_size, (height, width), hidden_size] and stride of (stride, stride), this will re-order the tokens as
[batch_size, (stride, stride, height // stride, width // stride), hidden_size]
This allows operations like Max2d to be computed as x.view(batch_size, stride*stride, -1, hidden_size).max(dim=1).
Not only is this faster, but it also makes it easy to support inputs of arbitrary
dimensions in addition to patch-wise sparsity.
Performing this operation multiple times in sequence puts entire windows as contiguous
in memory. For instance, if you applied the stride (2, 2) 3 times, entire windows of
size 8x8 would be contiguous in memory, allowing operations like mask unit attention
computed easily and efficiently, while also allowing max to be applied sequentially.
Note: This means that intermediate values of the model are not in height x width order, so they
need to be re-rolled if you want to use the intermediate values as a height x width feature map.
The last block of the network is fine though, since by then the strides are all consumed.
"""
batch_size, _, hidden_size = hidden_states.shape
current_size = size
hidden_states = hidden_states.view(*([batch_size] + current_size + [hidden_size]))
for strides in schedule:
# Move patches with the given strides to the batch dimension
# Create a view of the tensor with the patch stride as separate dims
# For example in 2d: [batch_size, height // stride, stride, width // stride, stride, C]
current_size = [i // s for i, s in zip(current_size, strides)]
# initialize new_shape with [height // stride, stride, width // stride, stride]
new_shape = [item for pair in zip(current_size, strides) for item in pair]
# add batch_size and hidden_size to new_shape
new_shape = [batch_size] + new_shape + [hidden_size]
hidden_states = hidden_states.view(new_shape)
# Move the patch stride into the batch dimension
# For example in 2d: [batch_size, stride, stride, height // stride, width // stride, hidden_size]
num_dims = len(new_shape)
permute = [0] + list(range(2, num_dims - 1, 2)) + list(range(1, num_dims - 1, 2)) + [num_dims - 1]
hidden_states = hidden_states.permute(permute)
# Now finally flatten the relevant dims into the batch dimension
hidden_states = hidden_states.flatten(0, len(strides))
batch_size *= math.prod(strides)
hidden_states = hidden_states.reshape(-1, math.prod(size), hidden_size)
return hidden_states
class HieraPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = HieraConfig
base_model_prefix = "hiera"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module) -> None:
"""Initialize the weights"""
std = self.config.initializer_range
if isinstance(module, HieraEmbeddings):
if self.config.sep_pos_embed:
nn.init.trunc_normal_(module.position_embeddings_spatial, std=std)
nn.init.trunc_normal_(module.position_embeddings_temporal, std=std)
else:
nn.init.trunc_normal_(module.position_embeddings, std=std)
elif isinstance(module, HieraDecoder):
nn.init.trunc_normal_(module.mask_token, std=std)
nn.init.trunc_normal_(module.decoder_position_embeddings, std=std)
elif isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d)):
nn.init.trunc_normal_(module.weight, std=std)
if module.bias is not None:
nn.init.constant_(module.bias, std)
elif isinstance(module, nn.LayerNorm):
nn.init.constant_(module.bias, std)
nn.init.constant_(module.weight, self.config.layer_norm_init)
HIERA_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`HieraConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
HIERA_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BitImageProcessor.__call__`]
for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class HieraPooler(nn.Module):
def __init__(self, config: HieraConfig):
super().__init__()
num_features = int(config.embed_dim * config.embed_dim_multiplier ** (len(config.depths) - 1))
self.layernorm = nn.LayerNorm(num_features, eps=config.layer_norm_eps)
self.pooler = nn.AdaptiveAvgPool1d(1)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = hidden_states.transpose(1, 2)
pooled_output = self.pooler(hidden_states)
pooled_output = torch.flatten(pooled_output, 1)
pooled_output = self.layernorm(pooled_output)
return pooled_output
@add_start_docstrings(
"The bare Hiera Model transformer outputting raw hidden-states without any specific head on top.",
HIERA_START_DOCSTRING,
"""
add_pooling_layer (`bool`, *optional*, defaults to `True`):
Whether or not to apply pooling layer.
is_mae (`bool`, *optional*, defaults to `False`):
Whether or not to run the model on MAE mode.
""",
)
class HieraModel(HieraPreTrainedModel):
def __init__(self, config: HieraConfig, add_pooling_layer: bool = True, is_mae: bool = False):
super().__init__(config)
self.num_features = int(config.embed_dim * config.embed_dim_multiplier ** (len(config.depths) - 1))
self.embeddings = HieraEmbeddings(config, is_mae=is_mae)
self.encoder = HieraEncoder(config)
self.unroll_size = [i // s for i, s in zip(config.input_size, config.patch_stride)]
self.unroll_schedule = [config.query_stride] * len(config.depths[:-1])
self.pooler = HieraPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> HieraPatchEmbeddings:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=HieraModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
noise: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
noise (`torch.FloatTensor` of shape `(batch_size, num_mask_units)`, *optional*) which is
mainly used for testing purposes to control randomness and maintain the reproducibility
when is_mae is set to True.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, len(self.config.depths))
# TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?)
expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype
if pixel_values.dtype != expected_dtype:
pixel_values = pixel_values.to(expected_dtype)
embedding_output, mask, ids_restore = self.embeddings(
pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, noise=noise
)
hidden_states = unroll(embedding_output, self.unroll_size, self.unroll_schedule)
# Discard masked tokens if mask is provided
if mask is not None:
mask_unit_area = math.prod(self.config.masked_unit_size)
batch_size, _, hidden_size = hidden_states.shape
positions = mask.unsqueeze(-1).tile(1, mask_unit_area, hidden_size)
positions = positions.bool()
hidden_states = hidden_states[positions]
hidden_states = hidden_states.view(batch_size, -1, hidden_size)
encoder_outputs = self.encoder(
hidden_states,
mask=mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = None
if self.pooler is not None:
pooled_output = self.pooler(sequence_output)
if not return_dict:
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
head_outputs = head_outputs + (mask, ids_restore) if mask is not None else head_outputs
return head_outputs + encoder_outputs[1:]
return HieraModelOutput(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
mask=mask,
ids_restore=ids_restore,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
)
class HieraDecoder(nn.Module):
def __init__(self, config: HieraConfig):
super().__init__()
num_features = int(config.embed_dim * config.embed_dim_multiplier ** (len(config.depths) - 1))
self.tokens_spatial_shape = [i // s for i, s in zip(config.input_size, config.patch_stride)]
self.tokens_spatial_shape_final = [
i // s ** (config.num_query_pool) for i, s in zip(self.tokens_spatial_shape, config.query_stride)
]
self.mask_unit_spatial_shape_final = [
i // s ** (config.num_query_pool) for i, s in zip(config.masked_unit_size, config.query_stride)
]
self.decoder_embeddings = nn.Linear(num_features, config.decoder_embed_dim)
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_embed_dim))
self.decoder_position_embeddings = nn.Parameter(
torch.zeros(1, math.prod(self.tokens_spatial_shape_final), config.decoder_embed_dim)
)
self.decoder_block = HieraStage(
config=config,
dim=config.decoder_embed_dim,
dim_out=config.decoder_embed_dim,
num_heads=config.decoder_num_heads,
depth=config.decoder_depth,
use_mask_unit_attn=False,
drop_path=[0.0] * config.decoder_depth,
query_stride=[1] * config.decoder_depth,
window_size=0,
)
self.decoder_norm = nn.LayerNorm(config.decoder_embed_dim, eps=config.layer_norm_eps)
# patch stride of prediction
self.pred_stride = config.patch_stride[-1] * (config.query_stride[-1] ** config.num_query_pool)
pred_dim = (self.pred_stride ** len(config.query_stride)) * config.num_channels
self.decoder_pred = nn.Linear(config.decoder_embed_dim, pred_dim)
def forward(
self,
encoder_hidden_states: torch.Tensor,
mask: torch.BoolTensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> torch.Tensor:
# Embed tokens
hidden_states = self.decoder_embeddings(encoder_hidden_states)
# Combine visible and mask tokens
# hidden_states : [batch_size, num_mask_units_visible, *mask_unit_spatial_shape_final, decoder_embed_dim]
# mask: [batch_size, num_mask_units]
decoder_hidden_states = torch.zeros(
*mask.shape, *hidden_states.shape[2:], device=hidden_states.device, dtype=hidden_states.dtype
)
mask_tokens = self.mask_token.view((1,) * (len(mask.shape) + len(hidden_states.shape[2:-1])) + (-1,))
new_mask_shape = mask.shape + (1,) * len(hidden_states.shape[2:])
mask = mask.reshape(new_mask_shape)
expand_shape = (-1,) * 2 + hidden_states.shape[2:]
mask = mask.expand(expand_shape)
decoder_hidden_states[mask.bool()] = hidden_states.flatten()
decoder_hidden_states = (1 - mask) * mask_tokens + mask * decoder_hidden_states
# Get back spatial order
hidden_states = undo_windowing(
decoder_hidden_states,
self.tokens_spatial_shape_final,
self.mask_unit_spatial_shape_final,
)
mask = undo_windowing(
mask[..., 0:1],
self.tokens_spatial_shape_final,
self.mask_unit_spatial_shape_final,
)
# Flatten
hidden_states = hidden_states.reshape(hidden_states.shape[0], -1, hidden_states.shape[-1])
mask = mask.view(hidden_states.shape[0], -1)
# Add pos embed
hidden_states = hidden_states + self.decoder_position_embeddings
# Apply decoder blocks
hidden_states, attn_weights = self.decoder_block(
hidden_states, head_mask=head_mask, output_attentions=output_attentions
)
hidden_states = self.decoder_norm(hidden_states)
# Predictor projection
hidden_states = self.decoder_pred(hidden_states)
return hidden_states, mask
class HieraMultiScaleHead(nn.Module):
def __init__(self, config: HieraConfig):
super().__init__()
self.mask_unit_spatial_shape_final = [
i // s ** (config.num_query_pool) for i, s in zip(config.masked_unit_size, config.query_stride)
]
self.stage_dimensions = [
int(config.embed_dim * config.embed_dim_multiplier**i) for i in range(len(config.depths))
]
current_masked_unit_size = config.masked_unit_size
self.multi_scale_fusion_heads = nn.ModuleList()
for idx in range(config.num_query_pool):
kernel = [i // s for i, s in zip(current_masked_unit_size, self.mask_unit_spatial_shape_final)]
current_masked_unit_size = [i // s for i, s in zip(current_masked_unit_size, config.query_stride)]
self.multi_scale_fusion_heads.append(
conv_nd(len(config.query_stride))(
self.stage_dimensions[idx],
self.stage_dimensions[-1],
kernel_size=kernel,
stride=kernel,
)
)
self.multi_scale_fusion_heads.append(nn.Identity())
def apply_fusion_head(self, head: nn.Module, hidden_states: torch.Tensor) -> torch.Tensor:
if isinstance(head, nn.Identity):
return hidden_states
batch_size, num_mask_units = hidden_states.shape[0:2]
# From: [batch_size, num_mask_units, mask_unit_height, mask_unit_width, hidden_size]
# To: head([batch_size * num_mask_units, hidden_size, mask_unit_height, mask_unit_width])
permute = [0] + [len(hidden_states.shape) - 2] + list(range(1, len(hidden_states.shape) - 2))
hidden_states = hidden_states.reshape(batch_size * num_mask_units, *hidden_states.shape[2:])
hidden_states = hidden_states.permute(permute)
hidden_states = head(hidden_states)
# Restore original layout
permute = [0] + list(range(2, len(hidden_states.shape))) + [1]
hidden_states = hidden_states.permute(permute)
hidden_states = hidden_states.reshape(
batch_size, num_mask_units, *hidden_states.shape[1:-1], hidden_states.shape[-1]
)
return hidden_states
def forward(self, feature_maps: List[torch.Tensor]) -> torch.Tensor:
# Multi-scale fusion
hidden_states = 0.0
for head, feature_map in zip(self.multi_scale_fusion_heads, feature_maps):
hidden_states = hidden_states + self.apply_fusion_head(head, feature_map)
return hidden_states
@add_start_docstrings(
"""The Hiera Model transformer with the decoder on top for self-supervised pre-training.
<Tip>
Note that we provide a script to pre-train this model on custom data in our [examples
directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
</Tip>
""",
HIERA_START_DOCSTRING,
)
class HieraForPreTraining(HieraPreTrainedModel):
def __init__(self, config: HieraConfig) -> None:
super().__init__(config)
# Encoder
self.hiera = HieraModel(config, add_pooling_layer=False, is_mae=True)
self.encoder_norm = nn.LayerNorm(self.hiera.num_features, eps=config.layer_norm_eps)
# Multi-scale fusion heads
self.multiscale_fusion = HieraMultiScaleHead(config)
# Decoder
self.decoder = HieraDecoder(config)
self.pred_stride = self.decoder.pred_stride
# Initialize weights and apply final processing
self.post_init()
def get_pixel_label_2d(self, pixel_values: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
# mask (boolean tensor): True means *masked*
pixel_values = pixel_values.permute(0, 2, 3, 1)
size = self.pred_stride
label = pixel_values.unfold(1, size, size).unfold(2, size, size)
label = label.flatten(1, 2).flatten(2)
label = label[mask.bool()]
if self.config.norm_pix_loss:
mean = label.mean(dim=-1, keepdim=True)
var = label.var(dim=-1, keepdim=True)
label = (label - mean) / (var + 1.0e-6) ** 0.5
return label
def get_pixel_label_3d(self, pixel_values: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
# mask (boolean tensor): True means *masked*
pixel_values = pixel_values[:, :, :: self.patch_stride[0], :, :]
size = self.pred_stride
label = pixel_values.unfold(3, size, size).unfold(4, size, size)
# Different from 2D
label = label.permute(0, 2, 3, 4, 5, 6, 1)
label = label.flatten(1, 3).flatten(2)
label = label[mask.bool()]
if self.config.norm_pix_loss:
mean = label.mean(dim=-1, keepdim=True)
var = label.var(dim=-1, keepdim=True)
label = (label - mean) / (var + 1.0e-6) ** 0.5
return label
def forward_loss(self, pixel_values: torch.Tensor, logits: torch.Tensor, mask: torch.BoolTensor):
# We invert the mask such that 1.0 is *masked*
mask = 1 - mask
if len(self.config.query_stride) == 2:
label = self.get_pixel_label_2d(pixel_values, mask)
elif len(self.config.query_stride) == 3:
label = self.get_pixel_label_3d(pixel_values, mask)
else:
raise NotImplementedError("Only images and videos are supported")
logits = logits[mask.bool()]
loss = (logits - label) ** 2
loss = loss.mean()
return loss
@add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=HieraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
noise: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, HieraForPreTrainingOutput]:
r"""
noise (`torch.FloatTensor` of shape `(batch_size, num_mask_units)`, *optional*) which is
mainly used for testing purposes to control randomness and maintain the reproducibility
when is_mae is set to True.
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, HieraForPreTraining
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("EduardoPacheco/hiera-tiny-224-mae")
>>> model = HieraForPreTraining.from_pretrained("EduardoPacheco/hiera-tiny-224-mae")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 196, 768]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.hiera(
pixel_values,
noise=noise,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=True,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=True,
)
feature_maps = outputs.reshaped_hidden_states
mask = outputs.mask
ids_to_restore = outputs.ids_restore
# Take only the query pooled and last hidden states
feature_maps = feature_maps[1 : self.hiera.config.num_query_pool + 1] + (feature_maps[-1],)
fused_hidden_states = self.multiscale_fusion(feature_maps)
fused_hidden_states = self.encoder_norm(fused_hidden_states)
# Reconstruct pixel values
logits, mask = self.decoder(
fused_hidden_states,
mask=mask,
head_mask=head_mask,
output_attentions=output_attentions,
)
loss = self.forward_loss(pixel_values, logits, mask)
if not return_dict:
output = (logits, mask, ids_to_restore)
if output_hidden_states:
output = output + (outputs.hidden_states,)
if output_attentions:
output = output + (outputs.attentions,)
if output_hidden_states:
output = output + (outputs.reshaped_hidden_states,)
return ((loss,) + output) if loss is not None else output
return HieraForPreTrainingOutput(
loss=loss,
logits=logits,
mask=mask,
ids_restore=ids_to_restore,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
reshaped_hidden_states=outputs.reshaped_hidden_states if output_hidden_states else None,
)
@add_start_docstrings(
"""
Hiera Model transformer with an image classification head on top (a linear layer on top of the final hidden state with
average pooling) e.g. for ImageNet.
<Tip>
Note that it's possible to fine-tune Hiera on higher resolution images than the ones it has been trained on, by
setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
position embeddings to the higher resolution.
</Tip>
""",
HIERA_START_DOCSTRING,
)
class HieraForImageClassification(HieraPreTrainedModel):
def __init__(self, config: HieraConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.hiera = HieraModel(config, add_pooling_layer=True, is_mae=False)
# Classifier head
self.classifier = (
nn.Linear(self.hiera.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=HieraForImageClassificationOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, HieraForImageClassificationOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.hiera(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[4:]
return ((loss,) + output) if loss is not None else output
return HieraForImageClassificationOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"""
Hiera backbone, to be used with frameworks like DETR and MaskFormer.
""",
HIERA_START_DOCSTRING,
)
class HieraBackbone(HieraPreTrainedModel, BackboneMixin):
def __init__(self, config: HieraConfig):
super().__init__(config)
super()._init_backbone(config)
self.num_features = [config.embed_dim] + [
int(config.embed_dim * config.embed_dim_multiplier**i) for i in range(len(config.depths))
]
self.embeddings = HieraEmbeddings(config, is_mae=False)
self.encoder = HieraEncoder(config)
# Add layer norms to hidden states of out_features
hidden_states_norms = {}
for stage, num_channels in zip(self._out_features, self.channels):
hidden_states_norms[stage] = nn.LayerNorm(num_channels)
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("EduardoPacheco/hiera-tiny-224")
>>> model = AutoBackbone.from_pretrained(
... "EduardoPacheco/hiera-tiny-224", out_features=["stage1", "stage2", "stage3", "stage4"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 768, 7, 7]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
embedding_output, _, _ = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output,
head_mask=None,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=True,
)
hidden_states = outputs.reshaped_hidden_states
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
batch_size, height, width, num_channels = hidden_state.shape
hidden_state = hidden_state.view(batch_size, height * width, num_channels)
hidden_state = self.hidden_states_norms[stage](hidden_state)
hidden_state = hidden_state.view(batch_size, height, width, num_channels)
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
feature_maps += (hidden_state,)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
# %%