Disease_Identification_SonatafyAI_BERT_v1
This model is a fine-tuned version of google-bert/bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1081
- Precision: 0.8040
- Recall: 0.8704
- F1: 0.8359
- Accuracy: 0.9838
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1154 | 1.0 | 680 | 0.0560 | 0.7148 | 0.8247 | 0.7658 | 0.9811 |
0.0436 | 2.0 | 1360 | 0.0573 | 0.7755 | 0.8513 | 0.8116 | 0.9843 |
0.0168 | 3.0 | 2040 | 0.0664 | 0.8211 | 0.8513 | 0.8359 | 0.9844 |
0.0092 | 4.0 | 2720 | 0.0837 | 0.8144 | 0.8640 | 0.8385 | 0.9840 |
0.006 | 5.0 | 3400 | 0.0986 | 0.8076 | 0.8590 | 0.8325 | 0.9839 |
0.0017 | 6.0 | 4080 | 0.1092 | 0.8081 | 0.8666 | 0.8363 | 0.9836 |
0.0011 | 7.0 | 4760 | 0.1081 | 0.8040 | 0.8704 | 0.8359 | 0.9838 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 160
Model tree for Sonatafyai/Disease_Identification_SonatafyAI_BERT_v1
Base model
google-bert/bert-base-cased