metadata
language:
- en
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- multi_news
metrics:
- rouge
base_model: google/mt5-small
model-index:
- name: mt5-small-multi-news
results:
- task:
type: text2text-generation
name: Sequence-to-sequence Language Modeling
dataset:
name: multi_news
type: multi_news
config: default
split: validation
args: default
metrics:
- type: rouge
value: 22.03
name: Rouge1
- type: rouge
value: 6.95
name: Rouge2
- type: rouge
value: 18.41
name: Rougel
- type: rouge
value: 18.72
name: Rougelsum
mt5-small-multi-news
This model is a fine-tuned version of google/mt5-small on the multi_news dataset. It achieves the following results on the evaluation set:
- Loss: 3.2170
- Rouge1: 22.03
- Rouge2: 6.95
- Rougel: 18.41
- Rougelsum: 18.72
Intended uses & limitations
Text summarization is the inteded use of this model. With further training the model could achieve better results.
Training and evaluation data
For the training data we used 10000 samples from the multi-news train dataset. For the evaluation data we used 500 samples from the multi-news evaluation dataset.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
5.2732 | 1.0 | 1250 | 3.2170 | 22.03 | 6.95 | 18.41 | 18.72 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3