{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x786a6b6629e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x786a6b662a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x786a6b662b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x786a6b662b90>", "_build": "<function ActorCriticPolicy._build at 0x786a6b662c20>", "forward": "<function ActorCriticPolicy.forward at 0x786a6b662cb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x786a6b662d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x786a6b662dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x786a6b662e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x786a6b662ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x786a6b662f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x786a6b663010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x786a6b7fdb40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711202806798211308, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKb1Q77Fhtw8FV1RPN4KRb7pDfC7/yuqvAAAAAAAAAAA2tTHvuETj7x0sDq9c37Ou+SsJj7g/rs8AACAPwAAgD8NzwQ+rnqyO/97xL3pNbo8SdrGPaLMZb4AAIA/AACAP1pTCL7/IVY//jqMvmErA7+sltu9cqTVvAAAAAAAAAAAEImmvlHvIr2qauU6H62JOa5fXz6OZQ26AACAPwAAgD/NqbG8SECkPynFS76gmhq/uTgAvQgF670AAAAAAAAAABoxQj79IWg+ruoZvjWWrL7TEsE8s7OrPAAAAAAAAAAACghivtsF0bwQObE6a9okOVoAOD5tNuO5AACAPwAAgD/N3JU9Y1SgPwqs8j7F6xi/hB6BPS22VD4AAAAAAAAAAEPGlz6Iavc+j8hIvZYT6b7Gy5E9DyCXvAAAAAAAAAAAzRuhPArMO7vauEC7KnaiPA8WTzw8H4u9AACAPwAAgD+ait48uA35ux7Aa7wBQTG+9QAfPMXNrDwAAIA/AACAP7Nlir5StcI8ynvbuducdjhr4VS+ShMVOQAAgD8AAIA/mptIPGGLvz0+kNK8b3GHvl2cejtiSTG9AAAAAAAAAACje6W+VpHNPnpkD74WZZq+FzzhvQxOSz0AAAAAAAAAAJqNY75BMOK80ksIO4Yc2jmFW0c+YEo0ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGLbvacqe9WMAWyUTegDjAF0lEdAlMQ3oC+10HV9lChoBkdActgNc4YJmmgHS/RoCEdAlMT5c9nscHV9lChoBkdAcEv3W4EwFmgHS9poCEdAlMW2Ij4YanV9lChoBkdAcN+2X9itrGgHTT0BaAhHQJTGTtAs0551fZQoaAZHQGuGULlV94NoB0v0aAhHQJTGwiNbTtt1fZQoaAZHQHANUBXCCSRoB00LAWgIR0CUxwA0Kqn4dX2UKGgGR0BtNmNFSbYsaAdLz2gIR0CUxx1uzhP1dX2UKGgGR0ByuQ2sJY1YaAdNWAFoCEdAlMhjrzGxU3V9lChoBkdAcAmigCfYjGgHS9poCEdAlMiOIEbHZXV9lChoBkdAcGkM36yjYmgHS9NoCEdAlMms6/7BPHV9lChoBkdAcEGum78Nx2gHTS8BaAhHQJTKiQr+YMR1fZQoaAZHQHESWBOHnEFoB0vAaAhHQJTKzrnkkrx1fZQoaAZHQHALhHoX9BNoB00/AWgIR0CUyxEK3NLUdX2UKGgGR0ByL6bvw3HaaAdLy2gIR0CUy+kbxVhkdX2UKGgGR0BwY+R7qptKaAdNEwFoCEdAlMyxT850bXV9lChoBkdAbwzzYEnss2gHS8ZoCEdAlSZOUdJaq3V9lChoBkdAb8g4n4O+ZmgHS99oCEdAlSazho/RmnV9lChoBkdAcDjdZJTVD2gHS/poCEdAlScW78Nx2nV9lChoBkdARZHE87p3YGgHS+JoCEdAlSjcMEzO5nV9lChoBkdAcCF4VARkE2gHS8loCEdAlSlQHzH0b3V9lChoBkdAcQuZ5AyEc2gHS81oCEdAlSsZAD7qIXV9lChoBkdAcI6jn3cpLGgHTXABaAhHQJUsHcuanaZ1fZQoaAZHQHAAV14gRsdoB0vCaAhHQJUtP+S8rZt1fZQoaAZHQG9AQxesxPBoB0vTaAhHQJUtSoAGSp11fZQoaAZHQG+UBP9DQZ5oB0u9aAhHQJUt/hrFfiR1fZQoaAZHQHIhKW1MM7VoB0vnaAhHQJUvGquKXOZ1fZQoaAZHQHIXF+RYA81oB01FAWgIR0CVMKeKKpDNdX2UKGgGR0BaG8sUZeiSaAdN6ANoCEdAlTGIiTt9hXV9lChoBkdAXhxssQNCq2gHTegDaAhHQJUyuUNayKN1fZQoaAZHQHFsBMSK3uxoB0vPaAhHQJUzUmKIi1R1fZQoaAZHQHMSvikwevJoB00PAWgIR0CVM23CsOoYdX2UKGgGR0BweAVM23rlaAdLw2gIR0CVNVkX1rZbdX2UKGgGR0BwrsGC7K7qaAdL0mgIR0CVNft7rs0IdX2UKGgGR0BiV3s/pt78aAdN6ANoCEdAlTX8X3xnWnV9lChoBkdAcaQ+qR2bG2gHS7xoCEdAlTctnf2saXV9lChoBkdAciQbJfYzzmgHS+ZoCEdAlTe9gv114nV9lChoBkdAcK1tCzC1qmgHS8RoCEdAlTp5xaPjn3V9lChoBkdAbKYDGLk0amgHTVoBaAhHQJU6vuQZGax1fZQoaAZHQHIq4vWYnfFoB0vqaAhHQJU69SvTw2F1fZQoaAZHQGEoAR02caxoB03oA2gIR0CVO3WUbDMvdX2UKGgGR0BvtERSP2f1aAdLyGgIR0CVO9JwbVBldX2UKGgGR0Bs2ONFSbYsaAdNvgJoCEdAlT6wntv4unV9lChoBkdAcHdTVDrquGgHS/JoCEdAlT7dkOI683V9lChoBkdAbL/Kji4rjGgHS+doCEdAlT73qNZNf3V9lChoBkdAcS/6mO2iL2gHS8doCEdAlT86qwQlKXV9lChoBkdAcQWEnssxwmgHS/FoCEdAlT9IVVPva3V9lChoBkdAc4EJeE7GN2gHTV4BaAhHQJVAdxPwd811fZQoaAZHQHFr8+/xlQNoB0u9aAhHQJVAwV58jRl1fZQoaAZHQHAv4Uvf0mNoB0vMaAhHQJVBeB/Zuht1fZQoaAZHQHKdCkGiYb9oB0vIaAhHQJVCbBDXvph1fZQoaAZHQG29g/TspodoB0vjaAhHQJVC9X1anrJ1fZQoaAZHQHHHxHPNVzZoB0vQaAhHQJVF2NWEK3N1fZQoaAZHQHEHTGo73f1oB0vKaAhHQJVF7mOlwcZ1fZQoaAZHQGLcDDTBqKxoB03oA2gIR0CVRfITGo73dX2UKGgGR0BFPEMTewcHaAdLymgIR0CVRf/hl18tdX2UKGgGR0BxrW6/Zdv9aAdL8mgIR0CVRrig00m/dX2UKGgGR0BycLYZl4C7aAdNBgFoCEdAlUeNXgccVHV9lChoBkdAX23o7muDBmgHTegDaAhHQJVIUMNMGot1fZQoaAZHQHI0wKrq+rVoB0vuaAhHQJVJlUBGQS11fZQoaAZHQG2IZ9E1EVpoB0viaAhHQJVKMe0Xxe91fZQoaAZHQHJlL1qWTotoB03TAWgIR0CVSq1bqyGBdX2UKGgGR0BwZKJm/WUbaAdNUQFoCEdAlUxEit7rs3V9lChoBkdAbd0sU7CBPWgHS81oCEdAlU0Fme18cHV9lChoBkdAbccXv6TGHmgHS8toCEdAlU3aiO/+KnV9lChoBkdAZM1cDbJwKmgHTegDaAhHQJVOj2QGOdZ1fZQoaAZHQHEh70WdmQNoB0v9aAhHQJVOyynk1dh1fZQoaAZHQHAz9znzQNVoB0u/aAhHQJVSFtrKvFF1fZQoaAZHQG2p3jENvwVoB00hAWgIR0CVUlu7pV0cdX2UKGgGR0BwvufukUKzaAdL62gIR0CVUpxqfvnbdX2UKGgGR0BrQRsj3VTaaAdNWQFoCEdAlVKuMdcSoXV9lChoBkdAMMSL61stTWgHS6BoCEdAlVN7NfPX1HV9lChoBkdAZUeEFGG21GgHTZEBaAhHQJVVAZqEeyR1fZQoaAZHQG6T6mO2iL5oB0vEaAhHQJVWr4593KV1fZQoaAZHQGGEaNMoMKFoB03oA2gIR0CVWQKcd5prdX2UKGgGR0BmbsQsf7rLaAdNwANoCEdAlVrHTEzfrXV9lChoBkdAcJw9bor4FmgHS9xoCEdAlVs6X0Gu93V9lChoBkdAcTcVvuPV/mgHTUwBaAhHQJVbRRrJr+J1fZQoaAZHQHGSIZl4C6poB0vNaAhHQJVbqq814xF1fZQoaAZHQHDQV2A5JbtoB0vpaAhHQJVb5NmDlHV1fZQoaAZHQGyPICEHt4RoB01eAWgIR0CVXHuIAOridX2UKGgGR0BwNIaya/h3aAdL6WgIR0CVYh+6RQrMdX2UKGgGR0BtulaQmu1XaAdLz2gIR0CVZNgxJul5dX2UKGgGR0BzO8VN5+pgaAdL6WgIR0CVZRKlpGnXdX2UKGgGR0Bw1qs5n13/aAdLxWgIR0CVZcuIAOridX2UKGgGR0BxtKLn9vS/aAdL3WgIR0CVZiHMEA5rdX2UKGgGR0Bjx9yFPBSDaAdN6ANoCEdAlWiO4G2TgXV9lChoBkdAcE/5VfeDWmgHTU4BaAhHQJVrO3Sa3JB1fZQoaAZHQF/cAG0NSZVoB03oA2gIR0CVbDEPUaybdX2UKGgGR0Bv9EhzNliCaAdL3WgIR0CVbb50bLlndX2UKGgGR0BwXEAjps42aAdL5mgIR0CVcLlqagEmdX2UKGgGR0BuWLW07bL2aAdN0gFoCEdAlXDh/d69kHV9lChoBkdAbe/2IwdsBWgHS/1oCEdAlXEbI5o4/HV9lChoBkdAb6KeWfK6nWgHS8doCEdAlXFt6HCXQnV9lChoBkdAV88HJLdvbWgHTegDaAhHQJVyxEsrd311fZQoaAZHQHEoqIi1RchoB00UAWgIR0CVctsA/9pAdX2UKGgGR0BwQ/JuEVWTaAdNKAFoCEdAlXLuFpPAPHV9lChoBkdAb3GfOlfqo2gHTdEDaAhHQJVz1gx8D0V1fZQoaAZHQHKvNmDlHSZoB00IAWgIR0CVdZz7MxGldX2UKGgGR0BjvddJJ5E/aAdN6ANoCEdAlXabN4Z/C3V9lChoBkdAb4wuJ1q33GgHS+hoCEdAlXa+P3i71HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |