Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0362
  • Accuracy: {'accuracy': 0.866}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.5633 {'accuracy': 0.822}
0.4445 2.0 500 0.5395 {'accuracy': 0.85}
0.4445 3.0 750 0.7314 {'accuracy': 0.844}
0.3104 4.0 1000 0.6346 {'accuracy': 0.867}
0.3104 5.0 1250 0.7909 {'accuracy': 0.854}
0.1899 6.0 1500 0.8945 {'accuracy': 0.872}
0.1899 7.0 1750 0.9758 {'accuracy': 0.866}
0.0805 8.0 2000 1.0404 {'accuracy': 0.865}
0.0805 9.0 2250 1.0483 {'accuracy': 0.861}
0.0581 10.0 2500 1.0362 {'accuracy': 0.866}

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Sube126/distilbert-base-uncased-lora-text-classification

Adapter
(198)
this model