SummerSigh's picture
Create README.md
75f4691
|
raw
history blame
662 Bytes

Usage:

from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("SummerSigh/Pythia410m-Instruct-SFT")
generator = pipeline('text-generation', model = 'SummerSigh/Pythia410m-Instruct-SFT')

inpopo  = input("Text here: ")

text = generator("<user>" + inpopo  + "<user><kinrel>" ,  max_length = 200, do_sample=True, top_p = 0.7, temperature = 0.5, repetition_penalty  = 1.2, pad_token_id=tokenizer.eos_token_id)
generated_text = text[0]["generated_text"]
parts = generated_text.split("<kinrel>")
cropped_text = "<kinrel>".join(parts[:2]) + "<kinrel>"
print(cropped_text)