Edit model card

layoutlm_alltags

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the layoutlmv4 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0891
  • Customer Address: {'precision': 0.7764705882352941, 'recall': 0.8048780487804879, 'f1': 0.7904191616766466, 'number': 82}
  • Customer Name: {'precision': 0.6666666666666666, 'recall': 0.8333333333333334, 'f1': 0.7407407407407408, 'number': 12}
  • Invoice Number: {'precision': 0.8571428571428571, 'recall': 1.0, 'f1': 0.923076923076923, 'number': 12}
  • Tax Amount: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2}
  • Total Amount: {'precision': 0.7142857142857143, 'recall': 0.9090909090909091, 'f1': 0.8, 'number': 11}
  • Vendor Name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12}
  • Overall Precision: 0.7857
  • Overall Recall: 0.8397
  • Overall F1: 0.8118
  • Overall Accuracy: 0.9801

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Customer Address Customer Name Invoice Number Tax Amount Total Amount Vendor Name Overall Precision Overall Recall Overall F1 Overall Accuracy
0.8211 6.67 20 0.3797 {'precision': 0.25316455696202533, 'recall': 0.24390243902439024, 'f1': 0.24844720496894412, 'number': 82} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} 0.2532 0.1527 0.1905 0.9050
0.3036 13.33 40 0.1941 {'precision': 0.6448598130841121, 'recall': 0.8414634146341463, 'f1': 0.73015873015873, 'number': 82} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.75, 'recall': 0.75, 'f1': 0.75, 'number': 12} 0.6555 0.5954 0.624 0.9493
0.1537 20.0 60 0.1153 {'precision': 0.7157894736842105, 'recall': 0.8292682926829268, 'f1': 0.768361581920904, 'number': 82} {'precision': 0.35714285714285715, 'recall': 0.4166666666666667, 'f1': 0.3846153846153846, 'number': 12} {'precision': 0.8461538461538461, 'recall': 0.9166666666666666, 'f1': 0.8799999999999999, 'number': 12} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.8461538461538461, 'recall': 0.9166666666666666, 'f1': 0.8799999999999999, 'number': 12} 0.7037 0.7252 0.7143 0.9663
0.0862 26.67 80 0.0953 {'precision': 0.8, 'recall': 0.8292682926829268, 'f1': 0.8143712574850299, 'number': 82} {'precision': 0.6, 'recall': 0.75, 'f1': 0.6666666666666665, 'number': 12} {'precision': 0.6666666666666666, 'recall': 1.0, 'f1': 0.8, 'number': 12} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} {'precision': 0.9166666666666666, 'recall': 0.9166666666666666, 'f1': 0.9166666666666666, 'number': 12} 0.7519 0.7634 0.7576 0.9757
0.0509 33.33 100 0.0846 {'precision': 0.7857142857142857, 'recall': 0.8048780487804879, 'f1': 0.7951807228915663, 'number': 82} {'precision': 0.7333333333333333, 'recall': 0.9166666666666666, 'f1': 0.8148148148148148, 'number': 12} {'precision': 0.8571428571428571, 'recall': 1.0, 'f1': 0.923076923076923, 'number': 12} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 1.0, 'recall': 0.5454545454545454, 'f1': 0.7058823529411764, 'number': 11} {'precision': 0.8461538461538461, 'recall': 0.9166666666666666, 'f1': 0.8799999999999999, 'number': 12} 0.8030 0.8092 0.8061 0.9775
0.0354 40.0 120 0.0852 {'precision': 0.7710843373493976, 'recall': 0.7804878048780488, 'f1': 0.7757575757575758, 'number': 82} {'precision': 0.6666666666666666, 'recall': 0.8333333333333334, 'f1': 0.7407407407407408, 'number': 12} {'precision': 0.8, 'recall': 1.0, 'f1': 0.888888888888889, 'number': 12} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.7142857142857143, 'recall': 0.9090909090909091, 'f1': 0.8, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} 0.7770 0.8244 0.8 0.9797
0.0297 46.67 140 0.0891 {'precision': 0.7764705882352941, 'recall': 0.8048780487804879, 'f1': 0.7904191616766466, 'number': 82} {'precision': 0.6666666666666666, 'recall': 0.8333333333333334, 'f1': 0.7407407407407408, 'number': 12} {'precision': 0.8571428571428571, 'recall': 1.0, 'f1': 0.923076923076923, 'number': 12} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.7142857142857143, 'recall': 0.9090909090909091, 'f1': 0.8, 'number': 11} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} 0.7857 0.8397 0.8118 0.9801

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.2.0+cpu
  • Datasets 2.12.0
  • Tokenizers 0.13.2
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Szczotar93/layoutlm_alltags

Finetuned
(136)
this model