ZEUS-8B-V2 / README.md
T145's picture
Updated inference settings
0ba2b94 verified
|
raw
history blame
5.59 kB
---
library_name: transformers
tags:
- mergekit
- merge
- llama-3.1
- roleplay
- function calling
base_model:
- arcee-ai/Llama-3.1-SuperNova-Lite
- akjindal53244/Llama-3.1-Storm-8B
- Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
- unsloth/Meta-Llama-3.1-8B-Instruct
model-index:
- name: ZEUS-8B-V2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 80.29
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 31.61
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 21.15
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.94
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.24
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 32.18
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
---
# ZEUS 8B 🌩️ V2
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) as a base.
### Models Merged
The following models were included in the merge:
* [arcee-ai/Llama-3.1-SuperNova-Lite](https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite)
* [akjindal53244/Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B)
* [Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2](https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model: unsloth/Meta-Llama-3.1-8B-Instruct
dtype: bfloat16
merge_method: dare_ties
parameters:
int8_mask: 1.0
slices:
- sources:
- layer_range: [0, 32]
model: akjindal53244/Llama-3.1-Storm-8B
parameters:
density: 0.8
weight: 0.25
- layer_range: [0, 32]
model: arcee-ai/Llama-3.1-SuperNova-Lite
parameters:
density: 0.8
weight: 0.33
- layer_range: [0, 32]
model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
parameters:
density: 0.8
weight: 0.42
- layer_range: [0, 32]
model: unsloth/Meta-Llama-3.1-8B-Instruct
tokenizer_source: base
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_T145__ZEUS-8B-V2)!
Based on the listed rankings as of 4/12/24, is the top-rank 8B model.
| Metric |Value|
|-------------------|----:|
|Avg. |30.07|
|IFEval (0-Shot) |80.29|
|BBH (3-Shot) |31.61|
|MATH Lvl 5 (4-Shot)|21.15|
|GPQA (0-shot) | 6.94|
|MuSR (0-shot) | 8.24|
|MMLU-PRO (5-shot) |32.18|
# Inference Settings
Personal recommendations are to use a [i1-Q4_K_M](https://www.reddit.com/r/LocalLLaMA/comments/1ck76rk/weightedimatrix_vs_static_quants/) quant with these settings:
```
num_ctx = 4096
repeat_penalty = 1.2
temperature = 0.85
tfs_z = 1.4
top_k = 0 # Change to 40+ if you're roleplaying
top_p = 1 # Change to 0.9 if top_k > 0
```
Other recommendations can be found on [this paper on mobile LLMs](https://openreview.net/pdf?id=ahVsd1hy2W), [this paper on balancing model parameters](https://arxiv.org/html/2408.13586v1), and [this Reddit post about tweaking Llama 3.1 parameters](https://www.reddit.com/r/LocalLLaMA/comments/1ej1zrl/try_these_settings_for_llama_31_for_longer_or/).