|
--- |
|
library_name: peft |
|
base_model: mistralai/Mistral-7B-Instruct-v0.2 |
|
license: mit |
|
datasets: |
|
- TESTtm7873/ChatCat |
|
language: |
|
- en |
|
--- |
|
# Model Card: Model ID |
|
|
|
## License |
|
|
|
MIT License |
|
|
|
## Languages Supported |
|
|
|
- English (en) |
|
|
|
--- |
|
|
|
## Overview |
|
|
|
This model is part of the VCC project and has been fine-tuned on the TESTtm7873/ChatCat dataset using the `mistralai/Mistral-7B-Instruct-v0.2` as the base model. The fine-tuning process utilized QLoRA for improved performance. |
|
|
|
--- |
|
|
|
## Getting Started |
|
|
|
To use this model, you'll need to set up your environment first: |
|
|
|
## Model initialization |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig |
|
from peft import PeftModel |
|
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"mistralai/Mistral-7B-Instruct-v0.2", |
|
load_in_8bit=True, |
|
device_map="auto", |
|
) |
|
model = PeftModel.from_pretrained(model, "TESTtm7873/MistralCat-1v") |
|
model.eval() |
|
``` |
|
|
|
## Inference |
|
```python |
|
def evaluate(question: str) -> str: |
|
prompt = f"The conversation between human and Virtual Cat Companion.\n[|Human|] {question}.\n[|AI|] " |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].cuda() |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=256 |
|
) |
|
output = tokenizer.decode(generation_output.sequences[0]).split("[|AI|]")[1] |
|
return output |
|
your_question: str = "You have the softest fur." |
|
print(evaluate(your_question)) |
|
``` |
|
|
|
|
|
- **Developed by:** testtm |
|
- **Funded by:** Project TEST |
|
- **Model type:** Mistral |
|
- **Language:** English |
|
- **Finetuned from model:** mistralai/Mistral-7B-Instruct-v0.2 |