|
--- |
|
language: |
|
- en |
|
- zh |
|
library_name: transformers |
|
tags: |
|
- Long Context |
|
- chatglm |
|
- llama |
|
datasets: |
|
- THUDM/LongAlign-10k |
|
- THUDM/LongBench |
|
--- |
|
# LongAlign-7B-64k |
|
|
|
<p align="center"> |
|
🤗 <a href="https://huggingface.co/datasets/THUDM/LongAlign-10k" target="_blank">[LongAlign Dataset] </a> • 💻 <a href="https://github.com/THUDM/LongAlign" target="_blank">[Github Repo]</a> • 📃 <a href="https://arxiv.org/" target="_blank">[LongAlign Paper]</a> |
|
</p> |
|
|
|
**LongAlign** is the first full recipe for LLM alignment on long context. We propose the **LongAlign-10k** dataset, containing 10,000 long instruction data of 8k-64k in length. We investigate on trianing strategies, namely **packing (with loss weighting) and sorted batching**, which are all implemented in our code. For real-world long context evaluation, we introduce **Chat-LongBench** that evaluate the instruction-following capability on queries of 10k-100k length. |
|
|
|
## All Models |
|
|
|
We open-sourced the following list of models: |
|
|
|
|Model|Huggingface Repo|Description| |
|
|---|---|---| |
|
|**LongAlign-6B-64k-base**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-6B-64k-base) | **ChatGLM3-6B** with an extended 64k context window | |
|
|**LongAlign-6B-64k**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-6B-64k) | Chat model by LongAlign training on LongAlign-6B-64k-base| |
|
|**LongAlign-7B-64k-base**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-7B-64k-base) | **Llama-2-7B** with an extended 64k context window | |
|
|**LongAlign-7B-64k**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-7B-64k) | Chat model by LongAlign training on LongAlign-7B-64k-base| |
|
|**LongAlign-13B-64k-base**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-13B-64k-base) | **Llama-2-13B** with an extended 64k context window | |
|
|**LongAlign-13B-64k**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-13B-64k) | Chat model by LongAlign training on LongAlign-13B-64k-base| |
|
|**ChatGLM3-6B-128k**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/chatglm3-6b-128k) | **ChatGLM3-6B** with a 128k context window| |
|
|
|
![](assets/leaderboard.png) |
|
|
|
## Model usage |
|
Chat prompt template for LongAlign-6B-64k: |
|
```text |
|
[Round 1] |
|
|
|
问:Hi! |
|
|
|
答:Hello! What can I assist you today? |
|
|
|
[Round 2] |
|
|
|
问:What should I do if I can't sleep at night? |
|
|
|
答: |
|
``` |
|
Chat prompt template for LongAlign-7B-64k and LongAlign-13B-64k: |
|
```text |
|
[INST]Hi![/INST]Hello! What can I assist you today? |
|
|
|
[INST]What should I do if I can't sleep at night?[/INST] |
|
``` |
|
ChatGLM3-6B-128k uses the same prompt template as [ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b). |
|
|
|
A simple demo for deployment of the model: |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/LongAlign-6B-64k", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("THUDM/LongAlign-6B-64k", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") |
|
model = model.eval() |
|
query = open("assets/paper.txt").read() + "\n\nPlease summarize the paper." |
|
response, history = model.chat(tokenizer, query, history=[], max_new_tokens=512, temperature=1) |
|
print(response) |
|
``` |
|
|
|
## Citation |
|
|
|
If you find our work useful, please consider citing LongAlign: |
|
|
|
``` |
|
|
|
``` |