File size: 9,786 Bytes
07729be
 
6666d84
 
 
 
 
07729be
4935da6
 
 
 
 
 
 
07729be
 
 
 
 
55ed62d
4935da6
b5a268c
 
 
 
 
6b47008
4935da6
 
 
 
 
 
 
 
25b996a
4935da6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bec39
 
 
4935da6
 
81bec39
4935da6
 
 
 
 
ed5e31e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4935da6
 
 
 
 
 
 
 
 
 
 
 
55ed62d
4935da6
 
55ed62d
4935da6
55ed62d
 
4935da6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
base_model: HuggingFaceM4/idefics2-8b
datasets:
- TIGER-Lab/Mantis-Instruct
language:
- en
license: apache-2.0
tags:
- multimodal
- lmm
- vlm
- llava
- siglip
- llama3
- mantis
model-index:
- name: mantis-8b-idefics2_8192
  results: []
---

# 🔥 Mantis (TMLR 2024)

[Paper](https://arxiv.org/abs/2405.01483) | 
[Website](https://tiger-ai-lab.github.io/Mantis/) | 
[Github](https://github.com/TIGER-AI-Lab/Mantis) | 
[Models](https://huggingface.co/collections/TIGER-Lab/mantis-6619b0834594c878cdb1d6e4) | 
[Demo](https://huggingface.co/spaces/TIGER-Lab/Mantis) |
[Wandb](https://api.wandb.ai/links/dongfu/lnkrl3af)

![Mantis](https://tiger-ai-lab.github.io/Mantis/images/radar_chart.png)

**Excited to announce Mantis-Idefics2, with enhanced ability in multi-image scenarios!**
It's fine-tuned on [Mantis-Instruct](https://huggingface.co/datasets/TIGER-Lab/Mantis-Instruct) from [Idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b)

## Summary

- Mantis-Idefics2 is an LMM with **interleaved text and image as inputs**, trained on Mantis-Instruct under academic-level resources (i.e. 36 hours on 16xA100-40G).
- Mantis is trained to have multi-image skills including co-reference, reasoning, comparing, temporal understanding.
- Mantis reaches the state-of-the-art performance on five multi-image benchmarks (NLVR2, Q-Bench, BLINK, MVBench, Mantis-Eval), and also maintain a strong single-image performance on par with CogVLM and Emu2.

## Multi-Image Performance

| Models             | Size |  Format  | NLVR2 | Q-Bench | Mantis-Eval | BLINK | MVBench |  Avg |
|--------------------|:----:|:--------:|:-----:|:-------:|:-----------:|:-----:|:-------:|:----:|
| GPT-4V             |   -  | sequence | 88.80 |  76.52  |    62.67    | 51.14 |  43.50  | 64.5 |
| Open Source Models |      |          |       |         |             |       |         |      |
| Random             |   -  |     -    | 48.93 |  40.20  |    23.04    | 38.09 |  27.30  | 35.5 |
| Kosmos2            | 1.6B |   merge  | 49.00 |  35.10  |    30.41    | 37.50 |  21.62  | 34.7 |
| LLaVA-v1.5         |  7B  |   merge  | 53.88 |  49.32  |    31.34    | 37.13 |  36.00  | 41.5 |
| LLava-V1.6         |  7B  |   merge  | 58.88 |  54.80  |    45.62    | 39.55 |  40.90  | 48.0 |
| Qwen-VL-Chat       |  7B  |   merge  | 58.72 |  45.90  |    39.17    | 31.17 |  42.15  | 43.4 |
| Fuyu               |  8B  |   merge  | 51.10 |  49.15  |    27.19    | 36.59 |  30.20  | 38.8 |
| BLIP-2             |  13B |   merge  | 59.42 |  51.20  |    49.77    | 39.45 |  31.40  | 46.2 |
| InstructBLIP       |  13B |   merge  | 60.26 |  44.30  |    45.62    | 42.24 |  32.50  | 45.0 |
| CogVLM             |  17B |   merge  | 58.58 |  53.20  |    45.16    | 41.54 |  37.30  | 47.2 |
| OpenFlamingo       |  9B  | sequence | 36.41 |  19.60  |    12.44    | 39.18 |   7.90  | 23.1 |
| Otter-Image        |  9B  | sequence | 49.15 |  17.50  |    14.29    | 36.26 |  15.30  | 26.5 |
| Idefics1           |  9B  | sequence | 54.63 |  30.60  |    28.11    | 24.69 |  26.42  | 32.9 |
| VideoLLaVA         |  7B  | sequence | 56.48 |  45.70  |    35.94    | 38.92 |  44.30  | 44.3 |
| Emu2-Chat          |  37B | sequence | 58.16 |  50.05  |    37.79    | 36.20 |  39.72  | 44.4 |
| Vila               |  8B  | sequence | 76.45 |  45.70  |    51.15    | 39.30 |  49.40  | 52.4 |
| Idefics2           |  8B  | sequence | 86.87 |  57.00  |    48.85    | 45.18 |  29.68  | 53.5 |
| Mantis-CLIP        |  8B  | sequence | 84.66 |  66.00  |    55.76    | 47.06 |  48.30  | 60.4 |
| Mantis-SIGLIP      |  8B  | sequence | 87.43 |  69.90  |    **59.45**    | 46.35 |  50.15  | 62.7 |
| Mantis-Flamingo    |  9B  | sequence | 52.96 |  46.80  |    32.72    | 38.00 |  40.83  | 42.3 |
| Mantis-Idefics2    |  8B  | sequence | **89.71** |  **75.20**  |    57.14    | **49.05** |  **51.38**  | **64.5** |
| $\Delta$ over SOTA |   -  |     -    |  +2.84 |  +18.20  |     +8.30    |  +3.87 |   +1.98  | +11.0 |

## Single-Image Performance

| Model           | Size | TextVQA |  VQA |  MMB | MMMU | OKVQA |  SQA | MathVista |  Avg |
|-----------------|:----:|:-------:|:----:|:----:|:----:|:-----:|:----:|:---------:|:----:|
| OpenFlamingo    |  9B  |   46.3  | 58.0 | 32.4 | 28.7 |  51.4 | 45.7 |    18.6   | 40.2 |
| Idefics1        |  9B  |   39.3  | 68.8 | 45.3 | 32.5 |  50.4 | 51.6 |    21.1   | 44.1 |
| InstructBLIP    |  7B  |   33.6  | 75.2 | 38.3 | 30.6 |  45.2 | 70.6 |    24.4   | 45.4 |
| Yi-VL           |  6B  |   44.8  | 72.5 | 68.4 | 39.1 |  51.3 | 71.7 |    29.7   | 53.9 |
| Qwen-VL-Chat    |  7B  |   63.8  | 78.2 | 61.8 | 35.9 |  56.6 | 68.2 |    15.5   | 54.3 |
| LLaVA-1.5       |  7B  |   58.2  | 76.6 | 64.8 | 35.3 |  53.4 | 70.4 |    25.6   | 54.9 |
| Emu2-Chat       |  37B |   <u>66.6</u>  | **84.9** | 63.6 | 36.3 |  **64.8** | 65.3 |    30.7   | 58.9 |
| CogVLM          |  17B |   **70.4**  | <u>82.3</u> | 65.8 | 32.1 |  <u>64.8</u> | 65.6 |    35.0   | 59.4 |
| Idefics2        |  8B  |   70.4  | 79.1 | <u>75.7</u> | **43.0** |  53.5 | **86.5** |    **51.4**   | **65.7** |
| Mantis-CLIP     |  8B  |   56.4  | 73.0 | 66.0 | 38.1 |  53.0 | 73.8 |    31.7   | 56.0 |
| Mantis-SigLIP   |  8B  |   59.2  | 74.9 | 68.7 | 40.1 |  55.4 | 74.9 |    34.4   | 58.2 |
| Mantis-Idefics2 |  8B  |   63.5  | 77.6 | 75.7 | <u>41.1</u> |  52.6 | <u>81.3</u> |    <u>40.4</u>   | <u>61.7</u> |

## How to use

### Run example inference:
```python

import requests
import torch
from PIL import Image
from io import BytesIO

from transformers import AutoProcessor, AutoModelForVision2Seq
from transformers.image_utils import load_image


processor = AutoProcessor.from_pretrained("TIGER-Lab/Mantis-8B-Idefics2") # do_image_splitting is False by default
model = AutoModelForVision2Seq.from_pretrained(
    "TIGER-Lab/Mantis-8B-Idefics2",
    device_map="auto"
)
generation_kwargs = {
    "max_new_tokens": 1024,
    "num_beams": 1,
    "do_sample": False
}

# Note that passing the image urls (instead of the actual pil images) to the processor is also possible
image1 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg")
image2 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg")
images = [image1, image2, image3]


query1 = "What cities image 1, image 2, and image 3 belong to respectively? Answer me in order."
query2 = "Which one do you recommend for a visit? and why?"
query3 = "Which picture has most cars in it?"

### Chat
### Round 1
messages = [
    {
        "role": "user",
        "content": [
            {"type": "image"},
            {"type": "image"},
            {"type": "image"},
            {"type": "text", "text": query1},
        ]
    }    
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=images, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}

# Generate
generated_ids = model.generate(**inputs, **generation_kwargs)
response = processor.batch_decode(generated_ids[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
print("User: ", query1)
print("ASSISTANT: ", response[0])

### Round 2
messages.append(
    {
        "role": "assistant",
        "content": [
            {"type": "text", "text": response[0]},
        ]
    }
)
messages.append(
    {
        "role": "user",
        "content": [
            {"type": "text", "text": query2},
        ]
    }
)
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=images, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
generated_ids = model.generate(**inputs, **generation_kwargs)
response = processor.batch_decode(generated_ids[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
print("User: ", query2)
print("ASSISTANT: ", response[0])

### Round 3
messages.append(
    {
        "role": "assistant",
        "content": [
            {"type": "text", "text": response[0]},
        ]
    }
)
messages.append(
    {
        "role": "user",
        "content": [
            {"type": "text", "text": query3},
        ]
    }
)

prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=images, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
generated_ids = model.generate(**inputs, **generation_kwargs)
response = processor.batch_decode(generated_ids[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
print("User: ", query3)
print("ASSISTANT: ", response[0])


"""
User:  What cities image 1, image 2, and image 3 belong to respectively? Answer me in order.
ASSISTANT:  Chicago, New York, San Francisco
User:  Which one do you recommend for a visit? and why?
ASSISTANT:  New York - because it's a bustling metropolis with iconic landmarks like the Statue of Liberty and the Empire State Building.
User:  Which picture has most cars in it?
ASSISTANT:  Image 3
"""
```

### Training
See [mantis/train](https://github.com/TIGER-AI-Lab/Mantis/tree/main/mantis/train) for details

### Evaluation
See [mantis/benchmark](https://github.com/TIGER-AI-Lab/Mantis/tree/main/mantis/benchmark) for details

**Please cite our paper or give a star to out Github repo if you find this model useful**

## Citation
```
@article{Jiang2024MANTISIM,
  title={MANTIS: Interleaved Multi-Image Instruction Tuning},
  author={Dongfu Jiang and Xuan He and Huaye Zeng and Cong Wei and Max W.F. Ku and Qian Liu and Wenhu Chen},
  journal={Trans. Mach. Learn. Res.},
  year={2024},
  volume={2024},
  url={Transactions on Machine Learning Research}
}
```