|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- TIGER-Lab/MMEB-train |
|
language: |
|
- en |
|
base_model: |
|
- llava-hf/llava-v1.6-mistral-7b-hf |
|
library_name: transformers |
|
--- |
|
|
|
A new checkpoint trained using [llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) with an enhanced training setup (LoRA tuning, batch size of 2048, maximum sub-dataset size of 100k). This model has shown significantly improved performance on MMEB & Flickr30K compared to the previous Phi-3.5-based model. |
|
|
|
This repo contains the code and data for [VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks](https://arxiv.org/abs/2410.05160). In this paper, we focus on building a unified multimodal embedding model suitable for a wide range of tasks. Our approach is based on transforming an existing, well-trained Vision-Language Model (VLM) into an embedding model. The core idea is to append an [EOS] token at the end of the input sequence, which serves as the representation for the combined multimodal inputs. |
|
|
|
## Github |
|
- [Github](https://github.com/TIGER-AI-Lab/VLM2Vec) |
|
|
|
|
|
## Data |
|
|
|
Our model is being trained on MMEB-train and evaluated on MMEB-eval with contrastive learning. We only use in-batch negatives for training. |
|
Our results on 36 evaluation datasets are: |
|
### Train/Eval Data |
|
- Train data: https://huggingface.co/datasets/TIGER-Lab/MMEB-train |
|
- Eval data: https://huggingface.co/datasets/TIGER-Lab/MMEB-eval |
|
|
|
|
|
## Experimental Results |
|
VLM2Vec-LlaVa-Next could outperform the baselines and other version of VLM2Vec by a large margin. |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64778fb8168cb428e00f69b0/IaKuKe5ps_bvDTf98C0rt.png) |
|
|
|
|
|
## How to use VLM2Vec-LlaVa-Next |
|
|
|
First you can clone our github |
|
```bash |
|
git clone https://github.com/TIGER-AI-Lab/VLM2Vec.git |
|
``` |
|
|
|
Then you can enter the directory to run the following command. |
|
|
|
from src.model import MMEBModel |
|
from src.arguments import ModelArguments |
|
from src.utils import load_processor |
|
|
|
import torch |
|
from transformers import HfArgumentParser, AutoProcessor |
|
from PIL import Image |
|
import numpy as np |
|
|
|
model_args = ModelArguments( |
|
model_name='TIGER-Lab/VLM2Vec-Full', |
|
pooling='last', |
|
normalize=True, |
|
model_backbone='llava') |
|
|
|
model = MMEBModel.load(model_args) |
|
model.eval() |
|
model = model.to('cuda', dtype=torch.bfloat16) |
|
|
|
processor = load_processor(model_args) |
|
|
|
# Image + Text -> Text |
|
inputs = processor('<image_1|> Represent the given image with the following question: What is in the image', [Image.open('figures/example.jpg')]) |
|
inputs = {key: value.to('cuda') for key, value in inputs.items()} |
|
qry_output = model(qry=inputs)["qry_reps"] |
|
|
|
string = 'A cat and a dog' |
|
inputs = processor(string) |
|
inputs = {key: value.to('cuda') for key, value in inputs.items()} |
|
tgt_output = model(tgt=inputs)["tgt_reps"] |
|
print(string, '=', model.compute_similarity(qry_output, tgt_output)) |
|
## A cat and a dog = tensor([[0.2969]], device='cuda:0', dtype=torch.bfloat16) |
|
|
|
string = 'A cat and a tiger' |
|
inputs = processor(string) |
|
inputs = {key: value.to('cuda') for key, value in inputs.items()} |
|
tgt_output = model(tgt=inputs)["tgt_reps"] |
|
print(string, '=', model.compute_similarity(qry_output, tgt_output)) |
|
## A cat and a tiger = tensor([[0.2080]], device='cuda:0', dtype=torch.bfloat16) |
|
|
|
# Text -> Image |
|
inputs = processor('Find me an everyday image that matches the given caption: A cat and a dog.',) |
|
inputs = {key: value.to('cuda') for key, value in inputs.items()} |
|
qry_output = model(qry=inputs)["qry_reps"] |
|
|
|
string = '<|image_1|> Represent the given image.' |
|
inputs = processor(string, [Image.open('figures/example.jpg')]) |
|
inputs = {key: value.to('cuda') for key, value in inputs.items()} |
|
tgt_output = model(tgt=inputs)["tgt_reps"] |
|
print(string, '=', model.compute_similarity(qry_output, tgt_output)) |
|
## <|image_1|> Represent the given image. = tensor([[0.3105]], device='cuda:0', dtype=torch.bfloat16) |
|
|
|
inputs = processor('Find me an everyday image that matches the given caption: A cat and a tiger.',) |
|
inputs = {key: value.to('cuda') for key, value in inputs.items()} |
|
qry_output = model(qry=inputs)["qry_reps"] |
|
|
|
string = '<|image_1|> Represent the given image.' |
|
inputs = processor(string, [Image.open('figures/example.jpg')]) |
|
inputs = {key: value.to('cuda') for key, value in inputs.items()} |
|
tgt_output = model(tgt=inputs)["tgt_reps"] |
|
print(string, '=', model.compute_similarity(qry_output, tgt_output)) |
|
## <|image_1|> Represent the given image. = tensor([[0.2158]], device='cuda:0', dtype=torch.bfloat16) |
|
``` |
|
|
|
## Citation |
|
``` |
|
@article{jiang2024vlm2vec, |
|
title={VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks}, |
|
author={Jiang, Ziyan and Meng, Rui and Yang, Xinyi and Yavuz, Semih and Zhou, Yingbo and Chen, Wenhu}, |
|
journal={arXiv preprint arXiv:2410.05160}, |
|
year={2024} |
|
} |
|
|