from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "/nlp_group/panleiyu/continuous_pretraining/tibetan-qwen2.5-0.5B"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "བོད་ཀྱི་ཆོས་ལུགས་རིག་གནས་ནི་གང་འདྲ་ཞིག་ཡིན་ནམ།"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
print(text)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
repetition_penalty=1.2,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
- Downloads last month
- 5
Model tree for TJUNLP/tibetan-qwen2.5-0.5B
Base model
Qwen/Qwen2.5-0.5B