Update README.md
Browse files
README.md
CHANGED
@@ -23,14 +23,11 @@ Among its main features are:
|
|
23 |
### test environment
|
24 |
|
25 |
- device: Nvidia A100 40G
|
26 |
-
- img size: 512x512
|
27 |
-
- percision:fp16
|
28 |
-
- steps: 30
|
29 |
-
- solver: LMSD
|
30 |
-
|
31 |
-
### text2img
|
32 |
-
|
33 |
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
## Model Sources
|
@@ -40,35 +37,46 @@ Among its main features are:
|
|
40 |
## Uses
|
41 |
|
42 |
```python
|
|
|
43 |
from faster_chat_glm import GLM6B, FasterChatGLM
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
# kernel for chat model.
|
46 |
-
kernel = GLM6B(plan_path=
|
47 |
-
batch_size=
|
48 |
num_beams=1,
|
49 |
-
use_cache=
|
50 |
num_heads=32,
|
51 |
emb_size_per_heads=128,
|
52 |
decoder_layers=28,
|
53 |
vocab_size=150528,
|
54 |
max_seq_len=MAX_OUT_LEN)
|
55 |
-
|
56 |
chat = FasterChatGLM(model_dir=chatglm6b_dir, kernel=kernel).half().cuda()
|
57 |
|
58 |
# generate
|
59 |
sample_output = chat.generate(inputs=input_ids, max_length=MAX_OUT_LEN)
|
60 |
-
|
|
|
|
|
61 |
```
|
62 |
## Demo output
|
63 |
|
64 |
-
###
|
65 |
-
|
66 |
-
|
67 |
-
### img2img
|
68 |
-
|
69 |
-
![text2img_demo](./output/img2img_input.jpg)
|
70 |
|
71 |
-
|
|
|
72 |
|
73 |
|
74 |
|
|
|
23 |
### test environment
|
24 |
|
25 |
- device: Nvidia A100 40G
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
|version|speed|
|
28 |
+
|:-:|:-:|
|
29 |
+
|original|30 tokens/s|
|
30 |
+
|lyraChatGLM|310 tokens/s|
|
31 |
|
32 |
|
33 |
## Model Sources
|
|
|
37 |
## Uses
|
38 |
|
39 |
```python
|
40 |
+
from transformers import AutoTokenizer
|
41 |
from faster_chat_glm import GLM6B, FasterChatGLM
|
42 |
|
43 |
+
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(chatglm6b_dir, trust_remote_code=True)
|
45 |
+
|
46 |
+
BATCH_SIZE = 8
|
47 |
+
MAX_OUT_LEN = 50
|
48 |
+
|
49 |
+
# prepare input
|
50 |
+
input_str = ["音乐推荐应该考虑哪些因素?帮我写一篇不少于800字的方案。 ", ] *
|
51 |
+
inputs = tokenizer(input_str, return_tensors="pt", padding=True)
|
52 |
+
input_ids = inputs.input_ids.to('cuda:0')
|
53 |
+
|
54 |
+
|
55 |
# kernel for chat model.
|
56 |
+
kernel = GLM6B(plan_path="./models/glm6b-bs{BATCH_SIZE}.ftm",
|
57 |
+
batch_size=1,
|
58 |
num_beams=1,
|
59 |
+
use_cache=True,
|
60 |
num_heads=32,
|
61 |
emb_size_per_heads=128,
|
62 |
decoder_layers=28,
|
63 |
vocab_size=150528,
|
64 |
max_seq_len=MAX_OUT_LEN)
|
|
|
65 |
chat = FasterChatGLM(model_dir=chatglm6b_dir, kernel=kernel).half().cuda()
|
66 |
|
67 |
# generate
|
68 |
sample_output = chat.generate(inputs=input_ids, max_length=MAX_OUT_LEN)
|
69 |
+
# de-tokenize model output to text
|
70 |
+
res = tokenizer.decode(sample_output[0], skip_special_tokens=True)
|
71 |
+
print(res)
|
72 |
```
|
73 |
## Demo output
|
74 |
|
75 |
+
### input
|
76 |
+
音乐推荐应该考虑哪些因素?帮我写一篇不少于800字的方案。
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
### output
|
79 |
+
音乐推荐是音乐爱好者们经常面临的问题。一个好的音乐推荐应该能够根据用户的需求和喜好,推荐出符合他们口味的音乐。本文将探讨音乐
|
80 |
|
81 |
|
82 |
|