|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- medmnist-v2 |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: ViT_bloodmnist |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: medmnist-v2 |
|
type: medmnist-v2 |
|
config: bloodmnist |
|
split: validation |
|
args: bloodmnist |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9748611517100263 |
|
- name: F1 |
|
type: f1 |
|
value: 0.97180354304681 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ViT_bloodmnist |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the medmnist-v2 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0879 |
|
- Accuracy: 0.9749 |
|
- F1: 0.9718 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 0.2747 | 1.0 | 374 | 0.0930 | 0.9696 | 0.9652 | |
|
| 0.0955 | 2.0 | 748 | 0.0998 | 0.9702 | 0.9670 | |
|
| 0.0405 | 3.0 | 1122 | 0.0812 | 0.9743 | 0.9725 | |
|
| 0.0194 | 4.0 | 1496 | 0.0829 | 0.9796 | 0.9784 | |
|
| 0.0081 | 5.0 | 1870 | 0.1328 | 0.9720 | 0.9696 | |
|
| 0.0026 | 6.0 | 2244 | 0.1252 | 0.9743 | 0.9735 | |
|
| 0.0004 | 7.0 | 2618 | 0.0997 | 0.9790 | 0.9778 | |
|
| 0.0001 | 8.0 | 2992 | 0.1049 | 0.9784 | 0.9768 | |
|
| 0.0001 | 9.0 | 3366 | 0.1072 | 0.9778 | 0.9761 | |
|
| 0.0001 | 10.0 | 3740 | 0.1077 | 0.9778 | 0.9761 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.19.1 |
|
|