sr_ner_tesla_j125 / README.md
Tanor's picture
Update README.md
97c697a verified
metadata
tags:
  - spacy
  - token-classification
language:
  - sr
license: cc-by-sa-3.0
model-index:
  - name: sr_ner_tesla_j125
    results:
      - task:
          name: NER
          type: token-classification
        metrics:
          - name: NER Precision
            type: precision
            value: 0.9490420168
          - name: NER Recall
            type: recall
            value: 0.9550128535
          - name: NER F Score
            type: f_score
            value: 0.9520180733

sr_ner_tesla_j125 is a spaCy model meticulously fine-tuned for Named Entity Recognition in Serbian language texts. This advanced model incorporates a transformer layer based on jerteh125, enhancing its analytical capabilities. It is proficient in identifying 7 distinct categories of entities: PERS (persons), ROLE (professions), DEMO (demonyms), ORG (organizations), LOC (locations), WORK (artworks), and EVENT (events). Detailed information about these categories is available in the accompanying table. The development of this model has been made possible through the support of the Science Fund of the Republic of Serbia, under grant #7276, for the project 'Text Embeddings - Serbian Language Applications - TESLA'.

Feature Description
Name sr_ner_tesla_j125
Version 1.0.0
spaCy >=3.7.2,<3.8.0
Default Pipeline transformer, ner
Components transformer, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources n/a
License CC BY-SA 3.0
Author Milica Ikonić Nešić, Saša Petalinkar, Mihailo Škorić, Ranka Stanković

Label Scheme

View label scheme (7 labels for 1 components)
Component Labels
ner DEMO, EVENT, LOC, ORG, PERS, ROLE, WORK

Accuracy

Type Score
ENTS_F 95.20
ENTS_P 94.90
ENTS_R 95.50
TRANSFORMER_LOSS 159576.78
NER_LOSS 169201.76