results / README.md
TeamVioletEdifai's picture
TeamVioletEdifai/cleanedYelpData
293b4bb verified
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0407
- Accuracy: 0.563
- F1: 0.5630
- Precision: 0.5631
- Recall: 0.563
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 1.0416 | 1.0 | 2500 | 1.0319 | 0.5479 | 0.5347 | 0.5392 | 0.5479 |
| 0.9488 | 2.0 | 5000 | 1.0248 | 0.5594 | 0.5535 | 0.5540 | 0.5594 |
| 0.8759 | 3.0 | 7500 | 1.0407 | 0.563 | 0.5630 | 0.5631 | 0.563 |
| 0.7576 | 4.0 | 10000 | 1.1242 | 0.5553 | 0.5539 | 0.5533 | 0.5553 |
| 0.6735 | 5.0 | 12500 | 1.2117 | 0.5528 | 0.5504 | 0.5500 | 0.5528 |
| 0.5951 | 6.0 | 15000 | 1.2677 | 0.5464 | 0.5442 | 0.5427 | 0.5464 |
| 0.5128 | 7.0 | 17500 | 1.4077 | 0.5401 | 0.5456 | 0.5570 | 0.5401 |
| 0.4343 | 8.0 | 20000 | 1.4986 | 0.5416 | 0.5433 | 0.5458 | 0.5416 |
| 0.3861 | 9.0 | 22500 | 1.5921 | 0.5402 | 0.5436 | 0.5497 | 0.5402 |
| 0.3713 | 10.0 | 25000 | 1.6282 | 0.5376 | 0.5401 | 0.5438 | 0.5376 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1