metadata
language:
- te
- en
license: llama2
datasets:
- Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized
- >-
Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized
model-index:
- name: Telugu-Llama2-7B-v0-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 53.58
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 78.33
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.63
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 43.26
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.95
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 20.39
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
name: Open LLM Leaderboard
Telugu-Llama2-7B-v0-Instruct
This model is based on Telugu-Llama2-7B-v0-Base and hase been finetuned on instruction datasets:
- yahma_alpaca_cleaned_telugu_filtered_and_romanized
- teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized
Input Text Format
### Instruction: {instruction}
### Input: {input}
## Response: {response}
Usage
With Romanized Telugu
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_name = "Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="right")
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
instruction = "Krindi samaacharam prakaram google app eppudu release ayyindi?"
input ="Google News is a news aggregator service developed by Google. It presents a continuous flow of links to articles organized from thousands of publishers and magazines. Google News is available as an app on Android, iOS, and the Web. Google released a beta version in September 2002 and the official app in January 2006."
text = f"""Instruction: {instruction} \nInput: {input} \nResponse:"""
encodings = tokenizer(text, padding=True, return_tensors="pt")
encodings = encodings.to(device)
with torch.inference_mode():
outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=500)
output = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)
Sample Output:
1. September 2002 Google released a beta version of Google News.
2. January 2006 Google released the official version of Google News.
With Native Telugu
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_name = "Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="right")
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
instruction = "కింది వచనాన్ని సంగ్రహించండి"
input="గూగుల్ వార్తలు అనేది గూగుల్ ద్వారా అభివృద్ధి చేయబడిన వార్తా అగ్రిగేటర్ సేవ. ఇది వేలకొద్దీ ప్రచురణకర్తలు మరియు మ్యాగజైన్ల నుండి నిర్వహించబడిన కథనాలకు నిరంతర లింక్లను అందిస్తుంది. గూగుల్ వార్తలు Android, iOS మరియు వెబ్లో యాప్గా అందుబాటులో ఉన్నాయి. గూగుల్ సెప్టెంబరు 2002లో బీటా వెర్షన్ను మరియు జనవరి 2006లో అధికారిక యాప్ను విడుదల చేసింది."
text = f"""Instruction: {instruction} \nInput: {input} \nResponse:"""
encodings = tokenizer(text, padding=True, return_tensors="pt")
encodings = encodings.to(device)
with torch.inference_mode():
outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=500)
output = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)
Sample Output:
- గూగుల్ వార్తలు అనేది గూగుల్ ద్వారా అభివృద్ధి చేయబడిన వార్తా అగ్రిగేటర్ సేవ, వేలకొద్దీ ప్రచురణకర్తలు మరియు మ్యాగజైన్ల నుండి నిర్వహించబడిన కథనాలకు నిరంతర లింక్లను అందిస్తుంది.
- గూగుల్ సెప్టెంబరు 2002లో బీటా వెర్షన్ మరియు జనవరి 2006లో అధికారిక యాప్ ను విడుదల చేసింది.
Developers:
The model is a collaborative effort by Ravi Theja and Ramsri Goutham. Feel free to DM either of us if you have any questions.
Note:
The model is quite sensitive to parameters and inputs and is not yet ready for production. It remains in the experimental phase, and we recommend using it accordingly.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 52.86 |
AI2 Reasoning Challenge (25-Shot) | 53.58 |
HellaSwag (10-Shot) | 78.33 |
MMLU (5-Shot) | 47.63 |
TruthfulQA (0-shot) | 43.26 |
Winogrande (5-shot) | 73.95 |
GSM8k (5-shot) | 20.39 |