Safetensors
English
HYDiT-LoRA / README.md
Zhiminli's picture
Update README.md
59b294b verified
|
raw
history blame
10.2 kB
---
license: other
license_name: tencent-hunyuan-community
license_link: https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/blob/main/LICENSE.txt
language:
- en
---
# HunyuanDiT LoRA
Language: **English**
## Instructions
The dependencies and installation are basically the same as the [**original model**](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1).
We provide two types of trained LoRA weights for you to test.
Then download the model using the following commands:
```bash
cd HunyuanDiT
# Use the huggingface-cli tool to download the model.
huggingface-cli download Tencent-Hunyuan/HYDiT-LoRA --local-dir ./ckpts/t2i/lora
```
## Training
We provide three types of weights for fine-tuning HY-DiT LoRA, `ema`, `module` and `distill`, and you can choose according to the actual effect. By default, we use `ema` weights.
Here is an example, we load the `ema` weights into the main model and perform LoRA fine-tuning through the `--ema-to-module` parameter.
If you want to load the `module` weights into the main model, just remove the `--ema-to-module` parameter.
If multiple resolution are used, you need to add the `--multireso` and `--reso-step 64 ` parameter.
```bash
model='DiT-g/2' # model type
task_flag="lora_porcelain_ema_rank64" # task flag
resume=./ckpts/t2i/model/ # resume checkpoint
index_file=dataset/porcelain/jsons/porcelain.json # the selected data indices
results_dir=./log_EXP # save root for results
batch_size=1 # training batch size
image_size=1024 # training image resolution
grad_accu_steps=2 # gradient accumulation steps
warmup_num_steps=0 # warm-up steps
lr=0.0001 # learning rate
ckpt_every=100 # create a ckpt every a few steps.
ckpt_latest_every=2000 # create a ckpt named `latest.pt` every a few steps.
rank=64 # rank of lora
max_training_steps=2000 # Maximum training iteration steps
PYTHONPATH=./ deepspeed hydit/train_deepspeed.py \
--task-flag ${task_flag} \
--model ${model} \
--training_parts lora \
--rank ${rank} \
--resume-split \
--resume ${resume} \
--ema-to-module \
--lr ${lr} \
--noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.03 \
--predict-type v_prediction \
--uncond-p 0.44 \
--uncond-p-t5 0.44 \
--index-file ${index_file} \
--random-flip \
--batch-size ${batch_size} \
--image-size ${image_size} \
--global-seed 999 \
--grad-accu-steps ${grad_accu_steps} \
--warmup-num-steps ${warmup_num_steps} \
--use-flash-attn \
--use-fp16 \
--ema-dtype fp32 \
--results-dir ${results_dir} \
--ckpt-every ${ckpt_every} \
--max-training-steps ${max_training_steps}\
--ckpt-latest-every ${ckpt_latest_every} \
--log-every 10 \
--deepspeed \
--deepspeed-optimizer \
--use-zero-stage 2 \
--qk-norm \
--rope-img base512 \
--rope-real \
"$@"
```
Recommended parameter settings
| Parameter | Description | Recommended Parameter Value | Note|
|:---------------:|:---------:|:---------------------------------------------------:|:--:|
| `--batch_size` | Training batch size | 1 | Depends on GPU memory|
| `--grad-accu-steps` | Size of gradient accumulation | 2 | - |
| `--rank` | Rank of lora | 64 | Choosing from 8-128|
| `--max-training-steps` | Training steps | 2000 | Depend on training data size, for reference apply 2000 steps on 100 images|
| `--lr` | Learning rate | 0.0001 | - |
## Inference
### Using Gradio
Make sure you have activated the conda environment before running the following command.
> ⚠️ Important Reminder:
> We recommend not using prompt enhance, as it may lead to the disappearance of style words.
```shell
# jade style
# By default, we start a Chinese UI.
python app/hydit_app.py --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
# Using Flash Attention for acceleration.
python app/hydit_app.py --infer-mode fa --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
# You can disable the enhancement model if the GPU memory is insufficient.
# The enhancement will be unavailable until you restart the app without the `--no-enhance` flag.
python app/hydit_app.py --no-enhance --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
# Start with English UI
python app/hydit_app.py --lang en --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
# porcelain style
# By default, we start a Chinese UI.
python app/hydit_app.py --load-key ema --lora_ckpt ./ckpts/t2i/lora/porcelain
# Using Flash Attention for acceleration.
python app/hydit_app.py --infer-mode fa --load-key ema --lora_ckpt ./ckpts/t2i/lora/porcelain
# You can disable the enhancement model if the GPU memory is insufficient.
# The enhancement will be unavailable until you restart the app without the `--no-enhance` flag.
python app/hydit_app.py --no-enhance --load-key ema --lora_ckpt ./ckpts/t2i/lora/porcelain
# Start with English UI
python app/hydit_app.py --lang en --load-key ema --lora_ckpt ./ckpts/t2i/lora/porcelain
```
### Using Command Line
We provide several commands to quick start:
```shell
# jade style
# Prompt Enhancement + Text-to-Image. Torch mode
python sample_t2i.py --prompt "玉石绘画风格,一只猫在追蝴蝶" --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
# Only Text-to-Image. Torch mode
python sample_t2i.py --prompt "玉石绘画风格,一只猫在追蝴蝶" --no-enhance --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
# Only Text-to-Image. Flash Attention mode
python sample_t2i.py --infer-mode fa --prompt "玉石绘画风格,一只猫在追蝴蝶" --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
# Generate an image with other image sizes.
python sample_t2i.py --prompt "玉石绘画风格,一只猫在追蝴蝶" --image-size 1280 768 --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
# porcelain style
# Prompt Enhancement + Text-to-Image. Torch mode
python sample_t2i.py --prompt "青花瓷风格,一只猫在追蝴蝶" --load-key ema --lora_ckpt ./ckpts/t2i/lora/porcelain
# Only Text-to-Image. Torch mode
python sample_t2i.py --prompt "青花瓷风格,一只猫在追蝴蝶" --no-enhance --load-key ema --lora_ckpt ./ckpts/t2i/lora/porcelain
# Only Text-to-Image. Flash Attention mode
python sample_t2i.py --infer-mode fa --prompt "青花瓷风格,一只猫在追蝴蝶" --load-key ema --lora_ckpt ./ckpts/t2i/lora/porcelain
# Generate an image with other image sizes.
python sample_t2i.py --prompt "青花瓷风格,一只猫在追蝴蝶" --image-size 1280 768 --load-key ema --lora_ckpt ./ckpts/t2i/lora/porcelain
```
Regarding how to use the LoRA weights we trained in diffusion, we provide the following script. To ensure compatibility with the diffuser, some modifications are made, which means that LoRA cannot be directly loaded.
```python
import torch
from diffusers import HunyuanDiTPipeline
num_layers = 40
def load_hunyuan_dit_lora(transformer_state_dict, lora_state_dict, lora_scale):
for i in range(num_layers):
Wqkv = torch.matmul(lora_state_dict[f"blocks.{i}.attn1.Wqkv.lora_B.weight"], lora_state_dict[f"blocks.{i}.attn1.Wqkv.lora_A.weight"])
q, k, v = torch.chunk(Wqkv, 3, dim=0)
transformer_state_dict[f"blocks.{i}.attn1.to_q.weight"] += lora_scale * q
transformer_state_dict[f"blocks.{i}.attn1.to_k.weight"] += lora_scale * k
transformer_state_dict[f"blocks.{i}.attn1.to_v.weight"] += lora_scale * v
out_proj = torch.matmul(lora_state_dict[f"blocks.{i}.attn1.out_proj.lora_B.weight"], lora_state_dict[f"blocks.{i}.attn1.out_proj.lora_A.weight"])
transformer_state_dict[f"blocks.{i}.attn1.to_out.0.weight"] += lora_scale * out_proj
q_proj = torch.matmul(lora_state_dict[f"blocks.{i}.attn2.q_proj.lora_B.weight"], lora_state_dict[f"blocks.{i}.attn2.q_proj.lora_A.weight"])
transformer_state_dict[f"blocks.{i}.attn2.to_q.weight"] += lora_scale * q_proj
kv_proj = torch.matmul(lora_state_dict[f"blocks.{i}.attn2.kv_proj.lora_B.weight"], lora_state_dict[f"blocks.{i}.attn2.kv_proj.lora_A.weight"])
k, v = torch.chunk(kv_proj, 2, dim=0)
transformer_state_dict[f"blocks.{i}.attn2.to_k.weight"] += lora_scale * k
transformer_state_dict[f"blocks.{i}.attn2.to_v.weight"] += lora_scale * v
out_proj = torch.matmul(lora_state_dict[f"blocks.{i}.attn2.out_proj.lora_B.weight"], lora_state_dict[f"blocks.{i}.attn2.out_proj.lora_A.weight"])
transformer_state_dict[f"blocks.{i}.attn2.to_out.0.weight"] += lora_scale * out_proj
q_proj = torch.matmul(lora_state_dict["pooler.q_proj.lora_B.weight"], lora_state_dict["pooler.q_proj.lora_A.weight"])
transformer_state_dict["time_extra_emb.pooler.q_proj.weight"] += lora_scale * q_proj
return transformer_state_dict
pipe = HunyuanDiTPipeline.from_pretrained("Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", torch_dtype=torch.float16)
pipe.to("cuda")
from safetensors import safe_open
lora_state_dict = {}
with safe_open("./ckpts/t2i/lora/jade/adapter_model.safetensors", framework="pt", device=0) as f:
for k in f.keys():
lora_state_dict[k[17:]] = f.get_tensor(k) # remove 'basemodel.model'
transformer_state_dict = pipe.transformer.state_dict()
transformer_state_dict = load_hunyuan_dit_lora(transformer_state_dict, lora_state_dict, lora_scale=1.0)
pipe.transformer.load_state_dict(transformer_state_dict)
prompt = "玉石绘画风格,一只猫在追蝴蝶"
image = pipe(
prompt,
num_inference_steps=100,
guidance_scale=6.0,
).images[0]
image.save('img.png')
```
More example prompts can be found in [example_prompts.txt](example_prompts.txt)