camelbert-ner-arabic

This model is a fine-tuned version of CAMeL-Lab/bert-base-arabic-camelbert-mix on unimelb-nlp/wikiann dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2111
  • Precision: 0.8884
  • Recall: 0.8955
  • F1: 0.8919
  • Accuracy: 0.9513

Model description

  • Base Model: CAMeL-Lab/bert-base-arabic-camelbert-mix
  • Task: Named Entity Recognition (NER)
  • Language: Arabic
  • Training Data: WikiAnn dataset for Arabic

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1892 1.0 1250 0.2003 0.8653 0.8677 0.8665 0.9430
0.123 2.0 2500 0.1912 0.8802 0.8826 0.8814 0.9493
0.0809 3.0 3750 0.1942 0.8928 0.8969 0.8948 0.9539

Usage

from transformers import pipeline

# Load the NER pipeline
nlp = pipeline("ner", model="Tevfik-istanbullu/camelbert-ner-arabic")

# Example text
text = "ูŠุนู…ู„ ู…ุญู…ุฏ ููŠ ุดุฑูƒุฉ ุฌูˆุฌู„ ููŠ ุฏุจูŠ"
results = nlp(text)
print(results)

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
23
Safetensors
Model size
108M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tevfik-istanbullu/camelbert-ner-arabic

Finetuned
(3)
this model

Dataset used to train Tevfik-istanbullu/camelbert-ner-arabic

Collection including Tevfik-istanbullu/camelbert-ner-arabic

Evaluation results