基于SDXL模型LoRA微调实现《少前2:追放》文生图

example

一、Model Library

  1. 微调数据集:基于SDXL模型的《少女前线2:追放》LoRA微调数据集
  2. 预训练模型:stable_diffusion_xl
  3. 底模:animagine-xl-3.0
  4. SDXL LoRA微调训练器:kohya_ss
  5. 数据集画质增强:waifu2x

二、Prompt Dict

  1. 少前2追放角色
  • 佩里缇亚: PKPSP
  • 塞布丽娜: SPAS12
  • 托洛洛: AKAlfa
  • 桑朵莱希: G36
  • 琼玖: QBZ191
  • 维普雷: Vepr12
  • 莫辛纳甘: MosinNagant
  • 黛烟: QBZ95
  • 克罗丽科: Kroliko
  • 夏克里: XCRL
  • 奇塔: MP7
  • 寇尔芙: TaurusCurve
  • 科谢尼娅: APS
  • 纳甘: Nagant1895
  • 纳美西丝: OM50
  • 莉塔拉: GalilARM
  • 闪电: OTs14
  1. Pixiv画师风格
  • おにねこ(鬼猫): Onineko26
  • 麻生: AsouAsabu
  • mignon: Mignon
  • migolu: Migolu

三、使用方式

  1. 安装部分环境(默认已安装pytorch等必要环境)
pip install diffusers --upgrade
pip install transformers accelerate safetensors
  1. 使用Hugging Face下载并使用底模(animagine-xl-3.0)和LoRA模型
import torch
import datetime
from PIL import Image
import matplotlib.pyplot as plt
from diffusers import (
  StableDiffusionXLPipeline, 
  EulerAncestralDiscreteScheduler,
  AutoencoderKL
)

# LoRA Hugging Face ID
lora_id = "TfiyuenLau/GirlsFrontline2_SDXL_LoRA"

# Load VAE component
vae = AutoencoderKL.from_pretrained(
  "madebyollin/sdxl-vae-fp16-fix", 
  torch_dtype=torch.float16
)

# Configure the pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
  "cagliostrolab/animagine-xl-3.0", 
  vae=vae,
  torch_dtype=torch.float16, 
  use_safetensors=True, 
)
pipe.load_lora_weights(lora_id)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to('cuda')
  1. 生成图像
# Define Prompt
output = "./output.png"
prompt = "1girl, OTs14, gloves, looking at viewer, smile, food, holding, solo, closed mouth, sitting, yellow eyes, black gloves, masterpiece, best quality"
negative_prompt = "nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name"

# Generate Image
image = pipe(
  prompt, 
  negative_prompt=negative_prompt, 
  width=1024,
  height=1024,
  guidance_scale=7,
  num_inference_steps=28
).images[0]

# Save & Show
image.save(output)
image = Image.open(output)
plt.axis('off')
plt.imshow(image)
image.close()
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.