general-april-3 / README.md
Thang203's picture
Add BERTopic model
69ecf63 verified
|
raw
history blame
2.44 kB
metadata
tags:
  - bertopic
library_name: bertopic
pipeline_tag: text-classification

general-april-3

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("Thang203/general-april-3")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 11
  • Number of training documents: 6795
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
0 financial - legal - summarization - models - llms 251 0_financial_legal_summarization_models
1 reasoning - models - language - llms - language models 887 1_reasoning_models_language_llms
2 models - llms - attacks - attack - language 467 2_models_llms_attacks_attack
3 models - model - training - language - inference 528 3_models_model_training_language
4 language - models - llms - human - model 638 4_language_models_llms_human
5 medical - clinical - models - language - llms 524 5_medical_clinical_models_language
6 visual - multimodal - models - image - language 630 6_visual_multimodal_models_image
7 code - generation - code generation - llms - models 417 7_code_generation_code generation_llms
8 models - language - language models - model - llms 1232 8_models_language_language models_model
9 chatgpt - ai - students - education - generative 542 9_chatgpt_ai_students_education
10 models - chatgpt - language - ai - llms 679 10_models_chatgpt_language_ai

Training hyperparameters

  • calculate_probabilities: False
  • language: english
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: 11
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: True
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.25.2
  • HDBSCAN: 0.8.33
  • UMAP: 0.5.6
  • Pandas: 2.0.3
  • Scikit-Learn: 1.2.2
  • Sentence-transformers: 2.6.1
  • Transformers: 4.38.2
  • Numba: 0.58.1
  • Plotly: 5.15.0
  • Python: 3.10.12