Thai-Supported Model2Vec Embedding Model
Collection
10 items
•
Updated
•
1
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): StaticEmbedding(
(embedding): EmbeddingBag(250002, 512, mode='mean')
)
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Thaweewat/bge-m3-m2v-512")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Base model
BAAI/bge-m3