|
--- |
|
base_model: cloudyu/Mixtral_34Bx2_MoE_60B |
|
inference: false |
|
license: cc-by-nc-4.0 |
|
model_creator: hai |
|
model_name: Mixtral 34Bx2 MoE 60B |
|
model_type: mixtral |
|
prompt_template: '{prompt} |
|
|
|
' |
|
quantized_by: TheBloke |
|
--- |
|
<!-- markdownlint-disable MD041 --> |
|
|
|
<!-- header start --> |
|
<!-- 200823 --> |
|
<div style="width: auto; margin-left: auto; margin-right: auto"> |
|
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> |
|
</div> |
|
<div style="display: flex; flex-direction: column; align-items: flex-end;"> |
|
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> |
|
</div> |
|
</div> |
|
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> |
|
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> |
|
<!-- header end --> |
|
|
|
# Mixtral 34Bx2 MoE 60B - AWQ |
|
- Model creator: [hai](https://huggingface.co/cloudyu) |
|
- Original model: [Mixtral 34Bx2 MoE 60B](https://huggingface.co/cloudyu/Mixtral_34Bx2_MoE_60B) |
|
|
|
<!-- description start --> |
|
## Description |
|
|
|
This repo contains AWQ model files for [hai's Mixtral 34Bx2 MoE 60B](https://huggingface.co/cloudyu/Mixtral_34Bx2_MoE_60B). |
|
|
|
These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). |
|
|
|
|
|
**MIXTRAL AWQ** |
|
|
|
This is a Mixtral AWQ model. |
|
|
|
For AutoAWQ inference, please install AutoAWQ 0.1.8 or later. |
|
|
|
Support via Transformers is also available, but currently requires installing Transformers from Github: `pip3 install git+https://github.com/huggingface/transformers.git` |
|
|
|
vLLM: version 0.2.6 is confirmed to support Mixtral AWQs. |
|
|
|
TGI: I tested version 1.3.3 and it loaded the model fine, but I was not able to get any output back. Further testing/debug is required. (Let me know if you get it working!) |
|
|
|
### About AWQ |
|
|
|
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. |
|
|
|
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. |
|
|
|
AWQ models are supported by (note that not all of these may support Mixtral models yet - see above): |
|
|
|
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ |
|
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. |
|
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) |
|
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers |
|
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code |
|
|
|
<!-- description end --> |
|
<!-- repositories-available start --> |
|
## Repositories available |
|
|
|
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Mixtral_34Bx2_MoE_60B-AWQ) |
|
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mixtral_34Bx2_MoE_60B-GPTQ) |
|
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mixtral_34Bx2_MoE_60B-GGUF) |
|
* [hai's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/cloudyu/Mixtral_34Bx2_MoE_60B) |
|
<!-- repositories-available end --> |
|
|
|
<!-- prompt-template start --> |
|
## Prompt template: None |
|
|
|
``` |
|
{prompt} |
|
|
|
``` |
|
|
|
<!-- prompt-template end --> |
|
|
|
|
|
<!-- README_AWQ.md-provided-files start --> |
|
## Provided files, and AWQ parameters |
|
|
|
I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered. |
|
|
|
Models are released as sharded safetensors files. |
|
|
|
| Branch | Bits | GS | AWQ Dataset | Seq Len | Size | |
|
| ------ | ---- | -- | ----------- | ------- | ---- | |
|
| [main](https://huggingface.co/TheBloke/Mixtral_34Bx2_MoE_60B-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 32.96 GB |
|
|
|
<!-- README_AWQ.md-provided-files end --> |
|
|
|
<!-- README_AWQ.md-text-generation-webui start --> |
|
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) |
|
|
|
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). |
|
|
|
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. |
|
|
|
1. Click the **Model tab**. |
|
2. Under **Download custom model or LoRA**, enter `TheBloke/Mixtral_34Bx2_MoE_60B-AWQ`. |
|
3. Click **Download**. |
|
4. The model will start downloading. Once it's finished it will say "Done". |
|
5. In the top left, click the refresh icon next to **Model**. |
|
6. In the **Model** dropdown, choose the model you just downloaded: `Mixtral_34Bx2_MoE_60B-AWQ` |
|
7. Select **Loader: AutoAWQ**. |
|
8. Click Load, and the model will load and is now ready for use. |
|
9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. |
|
10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! |
|
<!-- README_AWQ.md-text-generation-webui end --> |
|
|
|
<!-- README_AWQ.md-use-from-vllm start --> |
|
## Multi-user inference server: vLLM |
|
|
|
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). |
|
|
|
- Please ensure you are using vLLM version 0.2 or later. |
|
- When using vLLM as a server, pass the `--quantization awq` parameter. |
|
|
|
For example: |
|
|
|
```shell |
|
python3 -m vllm.entrypoints.api_server --model TheBloke/Mixtral_34Bx2_MoE_60B-AWQ --quantization awq --dtype auto |
|
``` |
|
|
|
- When using vLLM from Python code, again set `quantization=awq`. |
|
|
|
For example: |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
|
|
prompts = [ |
|
"Tell me about AI", |
|
"Write a story about llamas", |
|
"What is 291 - 150?", |
|
"How much wood would a woodchuck chuck if a woodchuck could chuck wood?", |
|
] |
|
prompt_template=f'''{prompt} |
|
''' |
|
|
|
prompts = [prompt_template.format(prompt=prompt) for prompt in prompts] |
|
|
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95) |
|
|
|
llm = LLM(model="TheBloke/Mixtral_34Bx2_MoE_60B-AWQ", quantization="awq", dtype="auto") |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
# Print the outputs. |
|
for output in outputs: |
|
prompt = output.prompt |
|
generated_text = output.outputs[0].text |
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") |
|
``` |
|
<!-- README_AWQ.md-use-from-vllm start --> |
|
|
|
<!-- README_AWQ.md-use-from-tgi start --> |
|
## Multi-user inference server: Hugging Face Text Generation Inference (TGI) |
|
|
|
Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` |
|
|
|
Example Docker parameters: |
|
|
|
```shell |
|
--model-id TheBloke/Mixtral_34Bx2_MoE_60B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 |
|
``` |
|
|
|
Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later): |
|
|
|
```shell |
|
pip3 install huggingface-hub |
|
``` |
|
|
|
```python |
|
from huggingface_hub import InferenceClient |
|
|
|
endpoint_url = "https://your-endpoint-url-here" |
|
|
|
prompt = "Tell me about AI" |
|
prompt_template=f'''{prompt} |
|
''' |
|
|
|
client = InferenceClient(endpoint_url) |
|
response = client.text_generation(prompt, |
|
max_new_tokens=128, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.95, |
|
top_k=40, |
|
repetition_penalty=1.1) |
|
|
|
print(f"Model output: ", response) |
|
``` |
|
<!-- README_AWQ.md-use-from-tgi end --> |
|
|
|
<!-- README_AWQ.md-use-from-python start --> |
|
## Inference from Python code using Transformers |
|
|
|
### Install the necessary packages |
|
|
|
- Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later. |
|
- Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later. |
|
|
|
```shell |
|
pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0" |
|
``` |
|
|
|
Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0. |
|
|
|
If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command: |
|
|
|
```shell |
|
pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl |
|
``` |
|
|
|
If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead: |
|
|
|
```shell |
|
pip3 uninstall -y autoawq |
|
git clone https://github.com/casper-hansen/AutoAWQ |
|
cd AutoAWQ |
|
pip3 install . |
|
``` |
|
|
|
### Transformers example code (requires Transformers 4.35.0 and later) |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
|
|
model_name_or_path = "TheBloke/Mixtral_34Bx2_MoE_60B-AWQ" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name_or_path, |
|
low_cpu_mem_usage=True, |
|
device_map="cuda:0" |
|
) |
|
|
|
# Using the text streamer to stream output one token at a time |
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
prompt = "Tell me about AI" |
|
prompt_template=f'''{prompt} |
|
''' |
|
|
|
# Convert prompt to tokens |
|
tokens = tokenizer( |
|
prompt_template, |
|
return_tensors='pt' |
|
).input_ids.cuda() |
|
|
|
generation_params = { |
|
"do_sample": True, |
|
"temperature": 0.7, |
|
"top_p": 0.95, |
|
"top_k": 40, |
|
"max_new_tokens": 512, |
|
"repetition_penalty": 1.1 |
|
} |
|
|
|
# Generate streamed output, visible one token at a time |
|
generation_output = model.generate( |
|
tokens, |
|
streamer=streamer, |
|
**generation_params |
|
) |
|
|
|
# Generation without a streamer, which will include the prompt in the output |
|
generation_output = model.generate( |
|
tokens, |
|
**generation_params |
|
) |
|
|
|
# Get the tokens from the output, decode them, print them |
|
token_output = generation_output[0] |
|
text_output = tokenizer.decode(token_output) |
|
print("model.generate output: ", text_output) |
|
|
|
# Inference is also possible via Transformers' pipeline |
|
from transformers import pipeline |
|
|
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
**generation_params |
|
) |
|
|
|
pipe_output = pipe(prompt_template)[0]['generated_text'] |
|
print("pipeline output: ", pipe_output) |
|
|
|
``` |
|
<!-- README_AWQ.md-use-from-python end --> |
|
|
|
<!-- README_AWQ.md-compatibility start --> |
|
## Compatibility |
|
|
|
The files provided are tested to work with: |
|
|
|
- [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`. |
|
- [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later. |
|
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later. |
|
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later. |
|
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later. |
|
|
|
<!-- README_AWQ.md-compatibility end --> |
|
|
|
<!-- footer start --> |
|
<!-- 200823 --> |
|
## Discord |
|
|
|
For further support, and discussions on these models and AI in general, join us at: |
|
|
|
[TheBloke AI's Discord server](https://discord.gg/theblokeai) |
|
|
|
## Thanks, and how to contribute |
|
|
|
Thanks to the [chirper.ai](https://chirper.ai) team! |
|
|
|
Thanks to Clay from [gpus.llm-utils.org](llm-utils)! |
|
|
|
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. |
|
|
|
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. |
|
|
|
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. |
|
|
|
* Patreon: https://patreon.com/TheBlokeAI |
|
* Ko-Fi: https://ko-fi.com/TheBlokeAI |
|
|
|
**Special thanks to**: Aemon Algiz. |
|
|
|
**Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros |
|
|
|
|
|
Thank you to all my generous patrons and donaters! |
|
|
|
And thank you again to a16z for their generous grant. |
|
|
|
<!-- footer end --> |
|
|
|
# Original model card: hai's Mixtral 34Bx2 MoE 60B |
|
|
|
|
|
# Mixtral MOE 2x34B |
|
|
|
This is my first English & Chinese MoE Model based on |
|
* [jondurbin/bagel-dpo-34b-v0.2] |
|
* [SUSTech/SUS-Chat-34B] |
|
|
|
|
|
gpu code example |
|
|
|
``` |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import math |
|
|
|
## v2 models |
|
model_path = "cloudyu/Mixtral_34Bx2_MoE_60B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True |
|
) |
|
print(model) |
|
prompt = input("please input prompt:") |
|
while len(prompt) > 0: |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") |
|
|
|
generation_output = model.generate( |
|
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 |
|
) |
|
print(tokenizer.decode(generation_output[0])) |
|
prompt = input("please input prompt:") |
|
``` |
|
|
|
CPU example |
|
|
|
``` |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import math |
|
|
|
## v2 models |
|
model_path = "cloudyu/Mixtral_34Bx2_MoE_60B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, torch_dtype=torch.bfloat16, device_map='cpu' |
|
) |
|
print(model) |
|
prompt = input("please input prompt:") |
|
while len(prompt) > 0: |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids |
|
|
|
generation_output = model.generate( |
|
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 |
|
) |
|
print(tokenizer.decode(generation_output[0])) |
|
prompt = input("please input prompt:") |
|
|
|
``` |
|
|
|
Output Examples: |
|
``` |
|
please input prompt:write a story about yosemite |
|
write a story about yosemite national park |
|
Yosemite National Park is located in the Sierra Nevada Mountains of California, USA. It was established on October 1st, 1890 and covers an area of approximately 747,956 acres (302,687 hectares). The park boasts some of America's most iconic natural wonders such as Yosemite Valley, Half Dome, El Capitan, Bridalveil Fall, Tuolumne Meadows, Glacier Point, Mariposa Grove, and many more breathtaking landscapes that attract millions of visitors each year. |
|
|
|
The history of Yosemite dates back to over seven million years ago when glaciers carved out its stunning granite cliffs and valleys. Native American tribes like Miwok and Paiute have lived here for thousands of years before European explorers arrived during the mid-nineteenth century. In fact, it was John Muir - one of America’s greatest conservationists who helped establish this region as a protected wilderness area by advocating for its preservation through his writings and activism. |
|
|
|
Today, Yosemite offers various recreational activities including hiking, rock climbing, camping, fishing, horseback riding, wildlife watching, photography, and winter sports like skiing and snowshoeing. Visitors can also enjoy ranger programs, guided tours, educational exhibits at visitor centers, or simply take time to appreciate nature while strolling along scenic trails surrounded by towering sequoia trees, cascading waterfalls, and crystal clear lakes. |
|
|
|
In addition to preserving these awe-inspiring vistas, Yosemite plays a crucial role in protecting numerous plant and animal species found within its boundaries. Some notable inhabitants include black bears, mountain lions, mule deer, coyotes, bobcats, golden eagles, peregrine falcons, bighorn sheep, and several types of fish native to the Merced River which runs through the heart of the valley. |
|
|
|
As we continue our journey into the future, let us remember the importance of safeguarding places like Yosemite so they may remain pristine sanctuaries where both humans and animals alike can thrive together amidst unspoiled beauty.</s> |
|
please input prompt:李开复是谁? |
|
李开复是谁? |
|
他是一个在人工智能领域有着卓越贡献的科学家,也是一位成功的企业家。他的名字与谷歌、微软等科技巨头紧密相连,他是创新工场的创始人之一,更是无数创业者心中的偶像和导师。然而,除了这些耀眼的光环之外,李开复还有着怎样的故事呢?让我们一起来揭秘这位传奇人物的人生历程吧!</s> |
|
``` |
|
|