TheBloke's picture
Update README.md
7fce43e
metadata
inference: false
license: other
language:
  - en
thumbnail: null
tags:
  - text generation
  - conversational
pipeline_tag: text-generation
TheBlokeAI

TehVenom's merge of Pygmalion 7B GGML

These are GGML model files for TehVenom's merge of Pygmalion 7B merged with Kaio Ken's SuperHOT 8K.

These are SuperHOT GGMLs with an increased context length. SuperHOT is a new system that employs RoPE to expand context beyond what was originally possible for a model. It was discovered and developed by kaiokendev.

In order to use the increased context length, you can presently use:

Support is also expected to come to llama.cpp, however work is still being done to find the optimal implementation.

To use the increased context with KoboldCpp, simply use --contextsize to set the desired context, eg --contextsize 4096 or --contextsize 8192.

NOTE: Increased context length is an area seeing rapid developments and improvements. It is quite possible that these models may be superseded by new developments in the coming days. If that's the case, I will remove them, or update this README as appropriate.

Repositories available

Compatibility

These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants.

However the increased context length won't work without specific support. See the note in the introduction for details on using increased context.

Explanation of the new k-quant methods

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
  • GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
pygmalion-7b-superhot-8k.ggmlv3.q2_K.bin q2_K 2 2.87 GB 5.37 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors.
pygmalion-7b-superhot-8k.ggmlv3.q3_K_L.bin q3_K_L 3 3.60 GB 6.10 GB New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
pygmalion-7b-superhot-8k.ggmlv3.q3_K_M.bin q3_K_M 3 3.28 GB 5.78 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
pygmalion-7b-superhot-8k.ggmlv3.q3_K_S.bin q3_K_S 3 2.95 GB 5.45 GB New k-quant method. Uses GGML_TYPE_Q3_K for all tensors
pygmalion-7b-superhot-8k.ggmlv3.q4_K_M.bin q4_K_M 4 4.08 GB 6.58 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K
pygmalion-7b-superhot-8k.ggmlv3.q4_K_S.bin q4_K_S 4 3.83 GB 6.33 GB New k-quant method. Uses GGML_TYPE_Q4_K for all tensors
pygmalion-7b-superhot-8k.ggmlv3.q5_K_M.bin q5_K_M 5 4.78 GB 7.28 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K
pygmalion-7b-superhot-8k.ggmlv3.q5_K_S.bin q5_K_S 5 4.65 GB 7.15 GB New k-quant method. Uses GGML_TYPE_Q5_K for all tensors
pygmalion-7b-superhot-8k.ggmlv3.q6_K.bin q6_K 6 5.53 GB 8.03 GB New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to run in koboldcpp

On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096:

python ./koboldcpp.py --stream --unbantokens --threads 8 --usecublas --gpulayers 100 pygmalion-7b-superhot-8k.ggmlv3.q4_K_M.bin

Change --gpulayers 100 to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration.

For OpenCL acceleration, change --usecublas to --useclblast 0 0. You may need to change the second 0 to 1 if you have both an iGPU and a discrete GPU.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Luke from CarbonQuill, Aemon Algiz.

Patreon special mentions: RoA, Lone Striker, Gabriel Puliatti, Derek Yates, Randy H, Jonathan Leane, Eugene Pentland, Karl Bernard, Viktor Bowallius, senxiiz, Daniel P. Andersen, Pierre Kircher, Deep Realms, Cory Kujawski, Oscar Rangel, Fen Risland, Ajan Kanaga, LangChain4j, webtim, Nikolai Manek, Trenton Dambrowitz, Raven Klaugh, Kalila, Khalefa Al-Ahmad, Chris McCloskey, Luke @flexchar, Ai Maven, Dave, Asp the Wyvern, Sean Connelly, Imad Khwaja, Space Cruiser, Rainer Wilmers, subjectnull, Alps Aficionado, Willian Hasse, Fred von Graf, Artur Olbinski, Johann-Peter Hartmann, WelcomeToTheClub, Willem Michiel, Michael Levine, Iucharbius , Spiking Neurons AB, K, biorpg, John Villwock, Pyrater, Greatston Gnanesh, Mano Prime, Junyu Yang, Stephen Murray, John Detwiler, Luke Pendergrass, terasurfer , Pieter, zynix , Edmond Seymore, theTransient, Nathan LeClaire, vamX, Kevin Schuppel, Preetika Verma, ya boyyy, Alex , SuperWojo, Ghost , Joseph William Delisle, Matthew Berman, Talal Aujan, chris gileta, Illia Dulskyi.

Thank you to all my generous patrons and donaters!

Original model card: Kaio Ken's SuperHOT 8K

SuperHOT Prototype 2 w/ 8K Context

This is a second prototype of SuperHOT, a NSFW focused LoRA, this time 7B with 8K context and no RLHF, using the same technique described in the github blog.

Looking for Merged & Quantized Models?

Make some please :)

Using the monkey-patch?

You will NEED to apply the monkeypatch or, if you are already using the monkeypatch, change the scaling factor to 0.25 and the maximum sequence length to 8192

The monkeypatch is only necessary if you are using a front-end/back-end that does not already support scaling and said front-end/back-end is Python-based (i.e. Huggingface Transformers). To apply the patch, you will need to copy the llama_rope_scaled_monkey_patch.py into your working directory and call the exported function replace_llama_rope_with_scaled_rope at the very start of your Python program. It will modify the Transformers library's implementation of RoPE to properly apply the scaling factor.

Using Oobabooga with Exllama?

Switch your loader to exllama or exllama_hf Add the arguments max_seq_len 8192 and compress_pos_emb 4. While the model may work well with compress_pos_emb 2, it was trained on 4, so that is what I advocate for you to use

Example in the command-line:

  • python server.py --max_seq_len 8192 --compress_pos_emb 4 --loader exllama_hf

In the UI, you will see the loader option in the Models tab. Once you select either exllama or exllama_hf, the max_seq_len and compress_pos_emb settings will appear.

Training Details

I trained the LoRA with the following configuration:

  • 1200 samples (~400 samples over 2048 sequence length)
  • learning rate of 3e-4
  • 3 epochs
  • The exported modules are:
    • q_proj
    • k_proj
    • v_proj
    • o_proj
    • no bias
  • Rank = 4
  • Alpha = 8
  • no dropout
  • weight decay of 0.1
  • AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
  • Trained on 4-bit base model
  • Cutoff length: 4096

Original model card: Pygmalion 7B

Pygmalion 7B

A conversational LLaMA fine-tune.

Model Details:

Pygmalion 7B is a dialogue model based on Meta's LLaMA-7B.

This is version 1. It has been fine-tuned using a subset of the data from Pygmalion-6B-v8-pt4, for those of you familiar with the project.

Applying the XORs

This models has the XOR files pre-applied out of the box. Converted from the XORs weights from PygmalionAI's release https://huggingface.co/PygmalionAI/pygmalion-7b

Prompting

The model was trained on the usual Pygmalion persona + chat format, so any of the usual UIs should already handle everything correctly. If you're using the model directly, this is the expected formatting:

[CHARACTER]'s Persona: [A few sentences about the character you want the model to play]
<START>
[DIALOGUE HISTORY]
You: [User's input message here]
[CHARACTER]:

Where [CHARACTER] is, as you can probably guess, the name of the character you want the model to portray, <START> should be used verbatim as a delimiter token to separate persona and scenario data from the dialogue, and [DIALOGUE HISTORY] is a sliding window of chat history so the model can have conversational context to draw from. Here's a concrete example:

Assistant's Persona: Assistant is a highly intelligent language model trained to comply with user requests.
<START>
Assistant: Hello! How may I help you today?
You: What is Zork?
Assistant:

Which will generate something like:

 Zork is an interactive fiction computer game created in the 1970s by Infocom, Inc., which was later acquired by Activision Blizzard. It is widely considered one of the most influential games ever made and has been credited with popularizing text-based adventure games. The original version of Zork was written in the programming language MACRO-10, but it was ported to many other platforms over the years."

The model will automatically emit an end-of-text token (</s>) when it judges that the response is complete.

Limitations and biases

The intended use-case for this model is fictional conversation for entertainment purposes. Any other sort of usage is out of scope.

As such, it was not fine-tuned to be safe and harmless: the base model and this fine-tune have been trained on data known to contain profanity and texts that are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive. Outputs might often be factually wrong or misleading.